DOI QR코드

DOI QR Code

하수처리 슬러지를 활용한 TiO2 From Sludge (TFS) 광촉매 제조 및 특성 분석

Manufacturing and Characterization of TiO2 From Sludge (TFS) Photocatalyst Using Sewage Treatment Sludge

  • 강찬솔 (신한대학교 첨단소재공학과) ;
  • 여우석 (신한대학교 스마트토목환경도시공학전공) ;
  • 나병찬 (신한대학교 스마트토목환경도시공학전공) ;
  • 정호진 (계명대학교 토목공학과) ;
  • 장호종 (KAIST IT 융합연구소 융합센서팀) ;
  • 김종규 (신한대학교 에너지공학과)
  • Chan Sol Kang (Department of Advanced Materials Engineering, Shinhan University) ;
  • Wooseok Yeo (Department of Smart Civil, Environmental and Urban Engineering, Shinhan University) ;
  • Byeong Chan Na (Department of Smart Civil, Environmental and Urban Engineering, Shinhan University) ;
  • Ho-jin Chung (Department of Civil Engineering, Keimyung University) ;
  • HoJong Chang (KAIST Institute for Information Technology Convergence Intergrated Sensor Team, KAIST) ;
  • Jong Kyu Kim (Department of Energy Engineering, Shinhan University)
  • 투고 : 2023.03.14
  • 심사 : 2023.04.21
  • 발행 : 2023.04.30

초록

In this study, TFS was manufactured using sewage sludge generated by applying TiCl4 to a total phosphorus treatment facility. Physical and chemical characteristics of TFS were analyzed to determine whether the manufactured TFS was successfully manufactured as TiO2 photocatalyst. As a result of operating, the total phosphorus treatment facility by applying TiCl4 as a flocculent, the total phosphorus concentration in the sewage was reduced from 0.3 mg/l to 0.03 mg/l, recording a over 90% total phosphorus reduction efficiency. In the physical analysis, the crystal structure of the TFS observed an anatase crystal structure. The element composition ratio of TFS is 84.05%, so it is determined that TFS can be used in place of TiO2. The average particle size of TFS is 12.5 ㎛ and the BET is 40.8 m2/g, which is not significantly different from the existing TiO2, P-25. In the NO reduction experiment, which is the cause of fine dust, conducted to determine TFS photocatalytic ability, there is no significant difference in NO reduction efficiency from the existing widely used TiO2, P-25. Therefore, TFS can reduce the amount of carbon dioxide generated by making sludge generated in total phosphorus treatment facilities eco-friendly resources, which can contribute to realizing carbon neutrality. In addition, TFS is considered an eco-friendly material that is excellent economically and environmentally because it can efficiently reduce NO, which is the cause of fine dust.

키워드

과제정보

본 논문은 2022년도 경기도형 연구자 중심의 R&D지원사업(2022-007, 2022년)으로 연구되었으며, 당 기관의 연구비 지원에 감사드립니다.

참고문헌

  1. Q. Guo, C. Zhou, Z. Ma, and X. Yang, "Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges", Adv. Mater., 2019, 31, 1901997.
  2. A. D. Paola, M. Bellardita, and L. Palmisano, "Brookite, the Least Known TiO2 Photocatalyst", Catalysts, 2013, 3, 36-73. https://doi.org/10.3390/catal3010036
  3. S. Y. Lee and S. J. Park, "TiO2 Photocatalyst for Water Treatment Applications", J. Ind. Eng. Chem., 2013, 19, 1761-1769. https://doi.org/10.1016/j.jiec.2013.07.012
  4. Y. W. Song, M. Y. Kim, M. H. Chung, Y. K. Yang, and J. C. Park, "NOx-Reduction Performance Test for TiO2 Paint", Molecules, 2020, 25, 4087.
  5. H. J. Lee, Y. G. Park, S. H. Lee, and J. H. Park, "Photocatalytic Properties of TiO2 According to Manufacturing Method", Korean Chem. Eng. Res., 2018, 56, 156-161.
  6. D. W. Shin, B. J. Kim, and Y. T. Kim, "Developments of Nanometer Scale TiO2 Powder and Mass Production Technique", CHERIC., 2001, 4, 18-27.
  7. J. H. Gong, J. C. Joo, and J. K. Kim, "Preparation and Characteristic Evaluation of Low-Cost TiO2 Photocatalyst", J. Korean Soc. Environ. Eng., 2019, 41, 196-203. https://doi.org/10.4491/KSEE.2019.41.4.196
  8. K. J. Jeon, J. H. Kim, and J. H. Ahn, "Phosphorus Removal Characteristics of Titanium Salts Compared with Aluminum Salt", Water Environ. Res., 2017, 89, 739-743. https://doi.org/10.2175/106143017X14839994522902
  9. M. T. Mohammed, Z. A. Khan, and A. N. Siddiquee, "Surface Modifications of Titanium Materials for Developing Corrosion Behavior in Human Body Environment: A Review", Procedia Mater. Sci., 2014, 6, 1610-1618. https://doi.org/10.1016/j.mspro.2014.07.144
  10. S. M. Hossain, M. J. Park, H. J. Park, L. Tijing, and J. H. Kim, "Preparation and Characterization of TiO2 Generated from Synthetic Wastewater Using TiCl4 Based Coagulation/ flocculation Aided with Ca(OH)2", J. Environ. Manage., 2019, 250, 109521.
  11. K. J. Jeon and J. H. Ahn, "Evaluation of Titanium Tetrachloride and Polytitanium Tetrachloride to Remove Phosphorus from Wastewater", Sep. Purif. Technol., 2018, 197, 197-201. https://doi.org/10.1016/j.seppur.2018.01.016
  12. J. Galloux, L. Chekli, S. Phuntsho, L. D. Tijing, S. Jeong, Y. X. Zhao, B. Y. Gao, S. H. Park, and H. K Shon, "Coagulation Performance and Floc Characteristics of Polytitanium Tetrachloride and Titanium Tetrachloride Compared with Ferric Chloride for Coal Mining Wastewater Treatment", Sep. Purif. Technol., 2015, 152, 94-100. https://doi.org/10.1016/j.seppur.2015.08.009
  13. Y. X. Zhao, B. Y. Gao, H. K. Shon, B. C. Cao and J. H. Kim, "Coagulation Characteristics Of Titanium (Ti) Salt Coagulant Compared with Aluminum (Al) and Iron (Fe) Salts", J. Hazard. Mater., 2011, 185, 1536-1542. https://doi.org/10.1016/j.jhazmat.2010.10.084
  14. J. B. Kim, H. J. Park, H. K. Shon, S. Vigneswaran, G. S. Lee, G. J. Kim, and J. H. Kim, "Development of Novel Coagulant for Sludge Recycling in the Water Treatment", Korean J. Chem. Eng., 2006, 12, 2234-2237.
  15. H. J. Kim, K. H. Cheon, M. S. Kim, D. N. Youn, G. H. Won, Y. Choi, H. S. Cho, J. H. Yoo, J. Y. Lee, H. J. Lee, and S. I. Jee, "For operation improvement to Enhance Total Phosphorus Removal Efficiency Using Alum and PAC of Sewage Treatment Plant", KSET, 2019, 20, 187-191. https://doi.org/10.26511/JKSET.20.3.6
  16. J. Zhang, S. Yan, L. Fu, F. Wang, M. Yuan, G. Luo, Q. Xu, X. Wang, and C. Li, "Photocatalytic Degradation of Rhodamine B on Anatase Rutile, and Brookite TiO2", Chin. J. Catal., 2011, 32, 983-991. https://doi.org/10.1016/S1872-2067(10)60222-7
  17. S. Y. Cho, J. G. Kim, and K. M. Park, "Efficiency Characteristics of Dye-Sensitized Solar Cells with Heat Treatment Temperature of P-25 Photocatalyst", Korean Chem. Eng. Res., 48, 2010, 649-653.
  18. H. Li, W. Zhang, and W. Pan, "Enhanced Photocatalytic Activity of Electrospun TiO2 Nanofibers with Optimal Anatase/Rutile Ratio", J. Am. Soc., 94, 3184-3187.
  19. N. Yuangpho, S. T. T. Le, T. Treerujiraphapong, W. Kanitchaidecha, and A. Nakaruk, "Enhanced Photocatalytic Performance of TiO2 Particles via Effect of Anatase-rutile Ratio", Phys. E., 2015, 67, 18-22. https://doi.org/10.1016/j.physe.2014.11.006
  20. K. Raj and B. Viswanathan, "Effect of Surface Area, Pore Volume and Particle Size of P25 Titania on the Phase Transformation of Anatase to Rutile", Indian J. Chem., 2009, 48, 1378-1382.
  21. J. C. Lee., A. I. Gopalan, G. Saianand, K. P. Lee, and W. J. Kim, "Manganese and Graphene Included Titanium Dioxide Composite Nanowires: Fabrication, Characterization and Enhanced Photocatalytic Activities", Nanomaterials., 2020, 10, 456.