DOI QR코드

DOI QR Code

실리카 나노입자가 포함된 에폭시 복합체의 경화 및 열분해특성 연구

A Study on Curing and Thermal Decomposition Properties of Epoxy Composites with Silica Nanoparticles

  • 투고 : 2023.03.31
  • 심사 : 2023.04.17
  • 발행 : 2023.04.30

초록

In this study, the curing and thermal decomposition properties of epoxy/silica composites fabricated by adding silica nanoparticles to epoxy resin were studied. The onset temperature, maximum exothermic temperature, and heat of reaction of epoxy/silica composites decreased as the silica content increased. The thermal decomposition behavior of cure epoxy/silica composites were analyzed using the Kissinger, Friedman, and Flynn-Wall-Ozawa methods based on the isoconversional method. As a result, the activation energy of thermal decomposition increased and the reaction of thermal decomposition was stabilized by addition of silica nanoparticles. However, when the silica content was 30 wt%, the activation energy was decreased due to the excessive addition of silica, which causes the agglomeration of silica particles in the epoxy resin.

키워드

참고문헌

  1. C. A. May, "Epoxy Resin: Chemistry and Technology", 2nd Ed., Marcel Dekker, New York, 1988.
  2. F. Yeasmin, A. K. Mallik, A. H. Chisty, F. N. Robel, M. Shahruzzaman, P. Haque, and H. Ihara, "Remarkable Enhancement of Thermal Stability of Epoxy Resin through the Incorporation of Mesoporous Silica Micro-filler", Heliyon, 2021, 7, e05959.
  3. V. T. Rathod, J. S. Kumar, and A. Jain, "Polymer and Ceramic Nanocomposites for Aerospace Applications", Appl. Nanosci., 2017, 7, 519-548. https://doi.org/10.1007/s13204-017-0592-9
  4. Y. L. Liu, C. Y. Hsu, W. L. Wei, and R. J. Jeng, "Preparation and Thermal Properties of Epoxy-silica Nanocomposites from Nanoscale Colloidal Silica", Polymer, 2003, 44, 5159-5167. https://doi.org/10.1016/S0032-3861(03)00519-6
  5. C. H. Lee and K. M. Kim, "A Study on Cure Behavior of an Epoxy/Anhydride System and Silica Filler Effects", J. Adhes. Interface, 2009, 10, 117-126.
  6. M. J. Lee, M. H. Jeon, J. W. Jeong, Y. R. Lee, and S. G. Lee, "Curing Behavior and Mechanical Properties of DGEBA/Phenol Novolac Hybrid Epoxy Resin according to Curing Accelerator Content", Text. Sci. Eng., 2020, 57, 177-185. https://doi.org/10.12772/TSE.2020.57.177
  7. S. H. Jang, Y. Han, D. S. Hwang, J. W. Jung, and Y. K. Kim, "Thermal Degradation Analyses of Epoxy-Silica Nano Composites", Compos. Res., 2020, 33, 268-274.
  8. K. M. Kim, H. Kim, and H. J. Kim, "Enhancing Thermo-Mechanical Properties of Epoxy Composites Using Fumed Silica with Different Surface Treatment", Polymers, 2021, 13, 2691.
  9. R. Hardis, J. Jessop, F. E. Peters, and M. R. Kessler, "Cure Kinetics Characterization and Monitoring of an Epoxy Resin using DSC, Raman Spectroscopy, and DEA", Compos. - A: Appl. Sci. Manuf., 2013, 49, 100-108. https://doi.org/10.1016/j.compositesa.2013.01.021
  10. J. W. Jeong, J. S. Won, W. G. Jo, H. H. Cho, E. H. Kim, and S. G. Lee, "Curing Behavior and Thermal Properties of DGEBA/phenol Novolac Epoxy Resin", Text. Sci. Eng., 2018, 55, 41-47. https://doi.org/10.12772/TSE.2018.55.041
  11. Z. Fang, J. Wang, A. Gu, and L. Tong, "Curing Behavior and Kinetic Analysis of Epoxy Resin/Multi-walled Carbon Nanotubes Composites", Front. Mater. Sci., 2007, 1, 415-422. https://doi.org/10.1007/s11706-007-0076-z
  12. K. J. Laidler, "Symbolism and Terminology in Chemical Kinetics", Pure Appl. Chem., 1981, 53, 753-771. https://doi.org/10.1351/pac198153030753
  13. H. Schulz, "From the Kissinger Equation to Model-free Kinetics: Reaction Kinetics of Thermally Initiated Solid-state Reactions", ChemTexts, 2018, 4, 1-10. https://doi.org/10.1007/s40828-018-0062-3
  14. H. L. Friedman, "Kinetics of Thermal Degradation of Char-forming Plastics from Thermogravimetry. Application to a Phenolic Plastic", J. Polym. Sci. - C: Polym. Symp., 1964, 6, 183-195. https://doi.org/10.1002/polc.5070060121
  15. J. H. Flynn and L. A. Wall, "General Treatment of the Thermogravimetry of Polymers", J. Res. Natl. Bur. Stand. - A: Phys. Chem., 1966, 70, 487-523. https://doi.org/10.6028/jres.070A.043
  16. J. S. Oh, J. M. Lee, and W. S. Ahn, "Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites", Polym. Korea, 2009, 33, 435-440.
  17. H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis", Anal. Chem., 1957, 29, 1702-1706. https://doi.org/10.1021/ac60131a045
  18. S. S. Choi, J. H. Lee, and S. H. Lee, "Thermal Properties of Lyocell Fibers by Activation Energy and Pretreatment During Oxidation", Polym. Korea, 2019, 43, 872-878. https://doi.org/10.7317/pk.2019.43.6.872
  19. T. Ozawa, "A New Method of Analyzing Thermogravimetric Data", Bull. Chem. Soc. Jpn., 1965, 38, 1881-1886. https://doi.org/10.1246/bcsj.38.1881