DOI QR코드

DOI QR Code

Polyvinyl Chloride의 산과 염기에 대한 내화학성 연구

Chemical Effect of Acid and Alkali Agents on Polyvinyl Chloride Microplastics

  • 이학봉 (한양대학교 유기나노공학과) ;
  • 이경섭 (한양대학교 유기나노공학과) ;
  • 한태희 (한양대학교 유기나노공학과)
  • Hak Bong Lee (Department of Organic and Nano Engineering, Hanyang University) ;
  • Kyong Sub Lee (Department of Organic and Nano Engineering, Hanyang University) ;
  • Tae Hee Han (Department of Organic and Nano Engineering, Hanyang University)
  • 투고 : 2023.03.03
  • 심사 : 2023.04.17
  • 발행 : 2023.04.30

초록

Plastic manufacturing is increasing due to its advantages (low cost, durability, water-proof property) to various application fields such as agriculture, electronics, medical equipment, and others. At the same time, despite recyclability of plastics, byproducts of plastics are ever increasing resulting in the generation of secondary microplastics (MPs; less than 5 ㎛ in size) caused by various environmental and physicochemical factors. Although pretreatment of MPs was studied due to the hazardous effect of MPs to the ecosystems, chemical effects of agents on the MPS used in the pretreatment were not deeply studied. In this study, the chemical effect of acid, alkali, and oxidizing agent on the PVC based MPs was studied. The PVC MPs were reacted with acids, alkalis, and oxidizing agent at 70 ℃ for 7 days, and changes of morphologies and chemical properties were observed when PVC MPs were reacted with sulfuric acid. The results pertaining to the chemical variations of PVC MPs could be a foundation stone for future research related to the pretreatment of MPs with various chemical agents.

키워드

과제정보

이 논문은 2020년도 정부(환경부)의 재원을 지원받아 수행된 기후탄소기술개발사업임(2020003110007).

참고문헌

  1. R. Geyer, J. R. Jambeck, and K. L. Law, "Production, Use, and Fate of All Plastics ever Made", Sci. Adv., 2017, 3, 25-29. https://doi.org/10.1126/sciadv.1700782
  2. M. C. Rillig, "Microplastic in Terrestrial Ecosystems and the Soil", Environ. Sci. Technol., 2012, 46, 6453-6454. https://doi.org/10.1021/es302011r
  3. D. K. A. Barnes, F. Galgani, R. C. Thompson, and M. Barlaz, "Accumulation and Fragmentation of Plastic Debris in Global Environments", Philos. Trans. R. Soc. B Biol. Sci., 2009, 364, 1985-1998. https://doi.org/10.1098/rstb.2008.0205
  4. I. E. Napper, A. Bakir, S. J. Rowland, and R. C. Thompson, "Characterisation, Quantity and Sorptive Properties of Microplastics Extracted from Cosmetics", Mar. Pollut. Bull., 2015, 99, 178-185. https://doi.org/10.1016/j.marpolbul.2015.07.029
  5. M. Cole, P. Lindeque, C. Halsband, and T. S. Galloway, "Microplastics as Contaminants in the Marine Environment: A Review", Mar. Pollut. Bull., 2011, 62, 2588-2597. https://doi.org/10.1016/j.marpolbul.2011.09.025
  6. L. Nizzetto, G. Bussi, M. N. Futter, D. Butterfield, and P. G. Whitehead, "A Theoretical Assessment of Microplastic Transport in River Catchments and Their Retention by Soils and River Sediments", Environ. Sci. Process. Impacts, 2016, 18, 1050-1059. https://doi.org/10.1039/C6EM00206D
  7. E. Van Sebille, C. Wilcox, L. Lebreton, N. Maximenko, B. D. Hardesty, J. A. Van Franeker, M. Eriksen, D. Siegel, F. Galgani, and K. L. Law, "A Global Inventory of Small Floating Plastic Debris", Environ. Res. Lett., 2015, 10, 124006.
  8. K. Duis and A. Coors, "Microplastics in the Aquatic and Terrestrial Environment: Sources (with a Specific Focus on Personal Care Products), Fate and Effects", Environ. Sci. Eur., 2016, 28, 1-25. https://doi.org/10.1186/s12302-015-0068-z
  9. J. Li, H. Liu, and J. P. Chen, "Microplastics in freshwater systems: A Review on Occurrence, Environmental Effects, and Methods for Microplastics Detection", Water Res., 2018, 137, 362-374. https://doi.org/10.1016/j.watres.2017.12.056
  10. G. Suaria, C. G. Avio, A. Mineo, G. L. Lattin, M. G. Magaldi, G. Belmonte, C. J. Moore, F. Regoli, and S. Aliani, "The Mediterranean Plastic Soup: Synthetic Polymers in Mediterranean Surface Waters", Sci. Rep., 2016, 6, 37551.
  11. B. Quinn, F. Murphy, and C. Ewins, "Validation of Density Separation for the Rapid Recovery of Microplastics from Sediment", Anal. Methods, 2017, 9, 1491-1498. https://doi.org/10.1039/C6AY02542K
  12. M. B. Zobkov and E. E. Esiukova, "Microplastics in a Marine Environment: Review of Methods for Sampling, Processing, and Analyzing Microplastics in Water, Bottom Sediments, and Coastal Deposits", Oceanology, 2018, 58, 137-143. https://doi.org/10.1134/s0001437017060169
  13. M. Claessens, L. Van Cauwenberghe, M. B. Vandegehuchte, and C. R. Janssen, "New Techniques for the Detection of Microplastics in Sediments and Field Collected Organisms", Mar. Pollut. Bull., 2013, 70, 227-233. https://doi.org/10.1016/j.marpolbul.2013.03.009
  14. J. Masura, J. Baker, G. Foster, and C. Authur, "Laboratory Methods for the Analysis of Microplastics in the Marine environment: Recommendations for Quantifying Synthetic Particles in Waters and Sediments", NOAA Tech. Memo. NOS-OR&R, 2015.
  15. H. B. Lee, K. S. Lee, S. J. Kim, B. I. Choi, B. R. Go, C. J. Rhu, and T. H. Han, "Effect of Chemical Agents on the Morphology and Chemical Structures of Microplastics", Polymers, 2022, 14, 1-15. https://doi.org/10.3390/polym14204353
  16. G. Reimonn, T. Lu, N. Gandhi, and W. T. Chen, "Review of Microplastic Pollution in the Environment and Emerging Recycling Solutions", J. Renew. Mater., 2019, 7, 1251-1268. https://doi.org/10.32604/jrm.2019.08055
  17. A. L. Lusher, N. A. Welden, P. Sobral, and M. Cole, "Sampling, Isolating and Identifying Microplastics Ingested by Fish and Invertebrates", Anal. Methods, 2017, 9, 1346-1360. https://doi.org/10.1039/C6AY02415G
  18. J. C. C. Freitas, T. J. Bonagamba, and F. G. Emmerich, "Investigation of Biomass- and Polymer-based Carbon Materials Using 13C High-resolution Solid-state NMR", Carbon, 2001, 39, 535-545. https://doi.org/10.1016/S0008-6223(00)00169-X
  19. S. Ramesh, K. H. Leen, K. Kumutha, A. K. Arof, "FTIR Studies of PVC/PMMA Blend Based Polymer Electrolytes", Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2007, 66, 1237-1242. https://doi.org/10.1016/j.saa.2006.06.012
  20. J. T. S. Allan, L. E. Prest, and E. B. Easton, "The Sulfonation of Polyvinyl Chloride: Synthesis and Characterization for Proton Conducting Membrane Applications", J. Membr. Sci., 2015, 489, 175-182. https://doi.org/10.1016/j.memsci.2015.03.093
  21. K. Khoiruddin, D. Ariono, S. Subagjo, and I. G. Wenten, "Structure and Transport Properties of Polyvinyl Chloride-based Heterogeneous Cation-exchange Membrane Modified by Additive Blending and Sulfonation", J. Electroanal. Chem., 2020, 873, 114304.