DOI QR코드

DOI QR Code

Effects of Light Quality, Temperature or Vermiculite Depth on Germination for the Veronica L.

광질, 온도 및 복토 깊이가 꼬리풀 (Veronica L.) 종자의 발아에 미치는 영향

  • Cheon Young Song (Department of Horticulture, Korea National University of Agriculture and Fisheries) ;
  • Ja Young Moon (Department of Horticulture, Korea National University of Agriculture and Fisheries) ;
  • Jung Won Sung (Department of Crops and Forestry, Korea National University of Agriculture and Fisheries) ;
  • Byeong Seon Park (Division of Garden Material Research, Sejong National Arboretum) ;
  • Jae Ik Nam (Division of Garden Material Research, Sejong National Arboretum) ;
  • Jeong Min Kim (Division of Garden Material Research, Sejong National Arboretum)
  • 송천영 (국립한국농수산대학교 원예학부) ;
  • 문자영 (국립한국농수산대학교 원예학부) ;
  • 성정원 (국립한국농수산대학교 작물.산림학부) ;
  • 박병선 (세종국립수목원 정원소재연구실) ;
  • 남재익 (세종국립수목원 정원소재연구실) ;
  • 김정민 (세종국립수목원 정원소재연구실)
  • Received : 2023.03.09
  • Accepted : 2023.03.23
  • Published : 2023.03.30

Abstract

This study was conducted to develop a mass production for a commercial use by germination of 4 kinds of Veronica glabrifolia Kitag., V. pusanensis Y.N.Lee, V. glabrifolia Kitag. × V. Spicata 'Alba' and V. spicata 'Ulster Blue Dwarf × V. longifolia. Veronica L. Effects of dipping time to a disinfecting fluid, light quality, temperature or vermiculite depth on the germination of Veronica L. were examined. Germination percentage in a disinfecting fluid for 120 minutes dipping was the 75.1% for V. pusanensis Y.N.Lee, and was some higher in 60 minutes dipping for all the species, but there was no significant difference according to the dipping time. The germination of the light quality was the best in complex light (red light + blue light) as the germination 92.8%, uniformity 2.3 in Veronica glabrifolia Kitag., or the germination 85.9%, uniformity 3.5 in V. pusanensis Y.N.Lee. And the germination percentage of red light was ranged from 79.1% to 95,5%, the blue light was 83.1% to 100% in the all species. However the germination in the dark condition significantly lowered as a 40.0% to 56.3% or uniformity from 5.2 to 6.5. Like this, the germination of blue light was better compare to the red light. The germination rate according to temperature was higher at 25℃ day/20℃ night ranged from 92.1% to 100%, or at 20℃ day/15℃ night as a 85.5% to 98.9% in the all species, compare to constant temperature 25℃ as a 80.9% in V. pusanensis Y.N.Lee. The germination rate of vermiculite depth was higher in 1 to 2mm ranged from 83.4% to 100%, however when the vermiculite was covered with 4mm, the germination rate significantly decreased from 45.2% to 72.1% and the hypocotyl length became longer above 3cm than that of others.

큰산꼬리풀(V. glabrifolia Kitag.), 부산꼬리풀(V. pusanensis Y.N.Lee), 큰산꼬리풀 교배조합(V. glabrifolia Kitag. × V. Spicata 'Alba')과 시판종 교배조합(V. spicata 'Ulster Blue Dwarf × V. longifolia) 등 4종에 대한 종자 소독액의 침지 시간, 광질, 온도 및 복토 깊이가 종자의 발아에 미치는 영향을 알아보았다. 종자의 소독액 침지시간에 따른 발아율 및 발아 균일도는 부산꼬리풀 120분 침지와 나머지 종은 60분 침지에서 다소 양호하였으나 큰 차이는 없었다. 광질의 처리에 있어서 복색광(적색광+청색광)에서 큰산꼬리풀의 발아율은 92.8%, 발아 균일도는 2.3, 부산꼬리풀의 발아율은 85.9%, 발아 균일도는 3.5로 가장 양호하였으며 교배조합에서도 같은 경향을 보였다. 꼬리풀에서 4종에서 적색광의 발아율은 79.1%~95.5%, 균일도는 3.2~4.2이었고, 청색광에서는 발아율은 83.1%~100%, 균일도는 1.9~3.8로 다소 높게 나타났으며 무광상태의 발아율은 40.0~56.3%, 균일도는 5.2~6.5로 현저하게 낮아졌다. 온도 처리에 있어서 주간 25℃/야간 20℃는 최종 발아율 92.1%~100%, 발아 균일도 1.5~2.6로 주간 20℃/야간 15℃ 최종 발아율 85.5%~98.9%, 발아 균일도 1.9~3.1보다 높은 것으로 나타났다. 부산 꼬리풀의 경우 주간 25℃/야간 20℃에서 최종 발아율 92.1%, 발아 균일도가 2.6으로 항온 25℃/24시간처리의 최종 발아율 80.9%, 발아 균일도 3.8보다 최종 발아율 및 발아 균일도가 높게 나타났다. 복토 정도에 따른 발아율 및 발아 균일도는 모든 종에서 1~2mm 복토에서 발아율이 83.4%~100% 및 발아 균일도 0.6~4.2로 가장 좋았으며 4mm로 복토를 많이 하면 최종 발아율 45.2%~72.1%, 발아 균일도 4.3~5.5로 현저하게 낮아지고 배축의 길이도 3cm 이상으로 길어졌다.

Keywords

Acknowledgement

본 연구는 국립세종수목원의 재원으로 지역특화 정원식물 스마트팜 증식기술 개발(베로니카속, 조팝나무속) 용역연구지원에 의해 이루어진 것임.

References

  1. Adams CA, Baskin JM, Baskin CC. 2005a. Trait stasis versus adaptation in disjunct relict species: evolutionary changes in seed dormancy-breaking and germination requirements in a subclade of Aristolochia subgenus Siphisia (Piperales). Seed Sci Res. 15:161-173.  https://doi.org/10.1079/SSR2005207
  2. Adams CA, Baskin JM, Baskin CC. 2005b. Comparative morphology of seeds of four closely related species of Aristolochia subgenus Siphisia (Aristolochiaceae, Piperales). Bot J Linnean Soc. 148:433-436.  https://doi.org/10.1111/j.1095-8339.2005.00402.x
  3. Albach DC, Jensen SR, Ozgokce F, Grayer RJ. 2005. Veronica: chemical characters for the support of phylogenetic relationships based on nuclear ribosomal and plastid DNA sequence data. Biochem Syst Ecol 33:1087-1106.  https://doi.org/10.1016/j.bse.2005.06.002
  4. Baskin CC. 2003. Breaking physical dormancy in seeds-focussing on the lens. New Phytol 158:229-232.  https://doi.org/10.1046/j.1469-8137.2003.00751.x
  5. Baskin JM, Baskin CC. 1983. Germination ecology of Veronica arvensis. J Ecol 71:57-68.  https://doi.org/10.2307/2259963
  6. Baskin JM, Baskin CC. 2004. A classification system for seed dormancy. Seed Sci Res 14:1-16.  https://doi.org/10.1079/ssr2003150
  7. Baskin CC, Baskin JM. 2005. Underdeveloped embryos in dwarf seeds and implications for assignment to dormancy class. Seed Sci Res. 15:357-360.  https://doi.org/10.1079/SSR2005224
  8. Baskin CC, Baskin JM. 2014. Seeds: Ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, CA, USA. 
  9. Baskin JM, Baskin CC, Li X. 2000. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol 15:139-152.  https://doi.org/10.1046/j.1442-1984.2000.00034.x
  10. Bewley JD, Black M. 1994. Seed: Physiology of development and germination. 2nd ed, Plenum Press, New York City, New York, USA, pp 60-198. 
  11. Chen SY, Tsai YH, Baskin CC, Baskin JM, Chien CT. 2015. Seed dormancy and germination of the three tropical medicinal species Gomphandra luzoniensis (Stemonuraceae), Nothapodytes nimmoniana (Icacinaceae) and Goniothalamus amuyon (Annonaceae). Seed Sci Res. 25:57-63.  https://doi.org/10.1017/S0960258514000385
  12. Choi GS, Park KW, Kang HM. 2003. Effect of temperature, light condition, and priming treatment on the germination of Aster glehni FR Seed. J Bio Env Con 12:132-138. 
  13. Cho JY, Son DM, Kim JM, Seo BS, Yang SY. 2008. Effects of various LEDs on the seed germination, growth and physiological activities of rape (Brassica napus) sprout vegetable. Kor. J. Plant. Res. 2:304-309. 
  14. Coolbear P, Francis A, Grierson D. 1984. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J Exp Bot 35:1609-1617.  https://doi.org/10.1093/jxb/35.11.1609
  15. Edwards TI. 1934. Relations of germinating soy beans to temperature and length of incubation time. Plant Physiol 9:1-30.  https://doi.org/10.1104/pp.9.1.1
  16. Finch-Savage WE, Leubner-Metzger G. 2006. Seed dormancy and the control of germination. New Phytol 171:501-523.  https://doi.org/10.1111/j.1469-8137.2006.01787.x
  17. Gordon AG. 1971. The germination resistance test - A new test for measuring germination quality of cereals. Can J Plant Sci 51:181-183.  https://doi.org/10.4141/cjps71-036
  18. Guerin J, Thorpe M, Duval D, Jusaitis M, Ainsley P. 2013. Germination of Veronica parnkalliana seeds in response to seasonal and fire cues. Proc. 5th Global Bot Gardens Congr. 
  19. Kang CH, Hong CK, Choi BK, Bang SB, Park YH, Han JS. 2000. Characteristics of seed germination and bulb dormancy in Korean native Allium victorialis L. Korean J Plant Res 13:219-226. 
  20. Kim JM, Park CH, Kim SY, Lim YJ, Jung JY. 2021. Seed germination responses to different incubation temperatures and light treatments in four Allium species native to Korea. Flower Res J. 29:173-180.  https://doi.org/10.11623/frj.2021.29.3.07
  21. Kim SD, Lee DH, Yun SM, Kim HM, Moon AR, Kim SY, Son SW. 2021. Population characteristics of Adenophora erecta S.T.Lee, J.K.Lee & S.T.Kim, a endemic plants in Ulleung island, Korea. Proc Korean Soc Environ Ecol Con. 31:34-35 
  22. Ko CH, Lee SY, Choi KS, Kim DH, Kim SY, Lee KC. 2017. Dormancy and seed germination in the endemic Korean plant Ligustrum foliosum Nakai. Flower Res J 25:124-132.  https://doi.org/10.11623/frj.2017.25.3.05
  23. Kosachev P, Mayland-Quellhorst E, Albach DC. 2019. Hybridization among species of Veronica subg. Pseudolysimachium in the Altai detected by SRAP markers. Nord. J. Bot. 37, 1-23.  https://doi.org/10.1111/njb.02209
  24. Lee JY, Lee JH, Ki GY, Kim ST, Han TH. 2011. Improvement of seed germination in Rosa rugosa. Kor J Hort Sci Technol. 29(4):352-357. 
  25. Lee SY, Lee YH, Kim YJ, Kim KS. 2012. Morphological and morphophysiological dormancy in seeds of several spring ephemerals native to Korea. Flower Res J 20:193-199.  https://doi.org/10.11623/frj.2012.20.4.193
  26. Nikolaeva MG. 1999. Patterns of seed dormancy and germination as related to plant phylogeny and ecological and geographical conditions of their habitats. Russian J Plant Physiol 46:369-373. 
  27. Okamoto K, Yanagi T, Takita S, Tanaka M, Higuchi T, Ushida Y, Watanebe H. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. Acta Hort. 440:111-116.  https://doi.org/10.17660/actahortic.1996.440.20
  28. Roberts HA, Neilson JE. 1982. Role of temperature in the seasonal dormancy of seeds of Veronica hederifolia L. New Phytol 90:745-749.  https://doi.org/10.1111/j.1469-8137.1982.tb03283.x
  29. Ryu SH, Rhie YH, Lee SY, Ko CH, Lee JS, Lee HJ, Lee KC. 2017. Effect of after-ripening, cold stratification, and GA3 treatment on Lychnis wilfordii (Regel) Maxim seed germination. Hort Sci Technol 25:525-533.  https://doi.org/10.12972/kjhst.20170057
  30. Scott SJ, Jones RA, Williams WA. 1984. Review of data analysis methods for seed germination. Crop Sci 24:1160-1162.  https://doi.org/10.2135/cropsci1984.0011183X002400060043x
  31. Song SJ, Shin US, Oh HJ, Kim SY, Lee SY. 2019. Seed germination responses and interspecific variations to different incubation temperatures in eight Veronica species native to Korea. Hort Sci Technol 37:20-31.  https://doi.org/10.7235/HORT.20190003
  32. Whittington WJ, Wilson GB, Humphries RN (1988) The germination characteristics of seeds from Lychnis viscaria L. (Viscaria vulgaris Bernh.), Potentilla rupestris L. and Veronica spicata L. New Phytol 109:505-514.  https://doi.org/10.1111/j.1469-8137.1988.tb03727.x
  33. KPNIC (2023) Korean plant names index committee. http://www.nature.go.kr /kpni/ index.do Accessed 10 Feb. 2023. 
  34. NIBR. 2022. National Institute of Biological Resources. https://www.nibr.go.kr.