DOI QR코드

DOI QR Code

TIME PERIODIC SOLUTIONS TO A HEAT EQUATION WITH LINEAR FORCING AND BOUNDARY CONDITIONS

  • In-Jee Jeong (Department of Mathematics and RIM Seoul National University) ;
  • Sun-Chul Kim (Department of Mathematics Chung-Ang University)
  • Received : 2022.06.27
  • Accepted : 2022.12.02
  • Published : 2023.03.01

Abstract

In this study, we consider a heat equation with a variable-coefficient linear forcing term and a time-periodic boundary condition. Under some decay and smoothness assumptions on the coefficient, we establish the existence and uniqueness of a time-periodic solution satisfying the boundary condition. Furthermore, possible connections to the closed boundary layer equations were discussed. The difficulty with a perturbed leading order coefficient is demonstrated by a simple example.

Keywords

Acknowledgement

I.-J. Jeong was supported by NRF-2022R1C1C1011051. S.-C. Kim was supported by NRF-2016R1D1A1B01007653.

References

  1. G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid Mech. 1 (1956), 177-190. https://doi.org/10.1017/S0022112056000123
  2. F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100-1103. https://doi.org/10.1073/pnas.53.5.1100
  3. M. Chen, X.-Y. Chen, and J. K. Hale, Structural stability for time-periodic one-dimensional parabolic equations, J. Differential Equations 96 (1992), no. 2, 355-418. https://doi.org/10.1016/0022-0396(92)90159-K
  4. N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equation, Proc. Amer. Math. Soc. 106 (1989), no. 1, 107-114. https://doi.org/10.2307/2047381
  5. R. Huang, Y. Wang, and Y. Ke, Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), no. 4, 1005-1014. https://doi.org/10.3934/dcdsb.2005.5.1005
  6. Y. Ke, R. Huang, and J. Sun, Periodic solutions for a degenerate parabolic equation, Appl. Math. Lett. 22 (2009), no. 6, 910-915. https://doi.org/10.1016/j.aml.2008.06.047
  7. S.-C. Kim, On Prandtl-Batchelor theory of a cylindrical eddy: asymptotic study, SIAM J. Appl. Math. 58 (1998), no. 5, 1394-1413. https://doi.org/10.1137/S0036139996303282
  8. S.-C. Kim, On Prandtl-Batchelor theory of a cylindrical eddy: existence and uniqueness, Z. Angew. Math. Phys. 51 (2000), no. 5, 674-686. https://doi.org/10.1007/PL00001514
  9. G. M. Lieberman, Time-periodic solutions of quasilinear parabolic differential equations. I. Dirichlet boundary conditions, J. Math. Anal. Appl. 264 (2001), no. 2, 617-638. https://doi.org/10.1006/jmaa.2000.7145
  10. O. A. Oleinik and V. N. Samokhin, Mathematical models in boundary layer theory, Applied Mathematics and Mathematical Computation, 15, Chapman & Hall/CRC, Boca Raton, FL, 1999.
  11. L. Prandtl, Uber flussigkeitsbewegung bei sehr kleiner reibung, Verhandl III, Intern. Math. Kongr. Heidelberg, Germany, 1904.
  12. T. I. Seidman, Periodic solutions of a non-linear parabolic equation, J. Differential Equations 19 (1975), no. 2, 242-257. https://doi.org/10.1016/0022-0396(75)90004-2
  13. O. Vejvoda, L. Herrmann, V. Lovicar, M. Sova, I. Straskraba, and M. Stedry, Partial differential equations: time-periodic solutions, Martinus Nijhoff Publishers, The Hague, 1981.
  14. I. I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc. 109 (1990), no. 3, 653-661. https://doi.org/10.2307/2048204