DOI QR코드

DOI QR Code

군 무기체계에 적용되는 4 축 스트레인-게이지의 오차에 대한 신호처리 소프트웨어 기법

A Signal Processing Software Technique for the Tolerance of the 4 Axis Strain-gauge Sensors applied to the Military Weapon System

  • 투고 : 2022.12.12
  • 심사 : 2023.02.17
  • 발행 : 2023.02.28

초록

군 무기체계에 널리 적용되는 4축 스트레인 게이지는 열악한 온도와 진동조건에서 운용되기 때문에 오차가 커지게 되고, 오동작을 일으킬 수 있다. 이를 개선하기 위해 본 논문에서는 군 무기체계에 적용되는 4축 스트레인 게이지의 오차에 대한 신호처리 소프트웨어 기법을 제안한다. 첫째, 주위 온도에 따른 스트레인-게이지의 오차와 신호처리회로의 오차를 평가하고 분석하였고, 둘째, 스트레인-게이지의 오차를 개선할 수 있는 불감대 영역과 오프셋 영역의 처리에 대한 소프트웨어 기법을 제안한다. 소프트웨어 기법을 적용한 실험결과는 온도시험과 운용시험에서 정상적으로 동작하는 것을 확인하였다. 따라서, 제안한 소프트웨어 기법은 타당하므로, 스트레인-게이지를 사용하여 시스템을 설계할 때 주위 온도와 진동에 따른 오차 개선에 유용한 정보로 사용될 수 있다.

The 4-axis strain-gauge, which is widely applied to military weapon systems, is operated in poor temperature and vibration conditions, tolerance may increase and malfunctions may occur. To improve this, this paper proposes a signal-processing software technique for the tolerance of the 4-axis strain gauge applied to a military weapon system. First, the tolerance of the strain-gauge and the signal processing circuit according to the ambient temperature were evaluated and analyzed. Second, a software technique for processing the dead zone and offset area that can improve the tolerance of the strain-gauge is proposed. The experimental results applying the software technique confirmed that it operated normally in the temperature test and operation test. Therefore, the proposed software technique is valid and can be used as useful information to improve tolerance due to ambient temperature and vibration when designing a system using a strain-gauge.

키워드

참고문헌

  1. N. Min and J. Kim, Sensor Engineering Introduction. Seoul: Dong-il press, 2020, pp. 305.
  2. L. Zhang, S. Guo, H. Yu, and Y. Song, "Performance evaluation of a strain-gauge force sensor for a haptic robot-assisted catheter operating system," Microsystem Technologies, vol. 23, no. 10, 2017, pp. 5041-5050. https://doi.org/10.1007/s00542-017-3380-2
  3. M. Liu, Q. Zhang, Y. Shao, C. Liu, and Y. Zhao, "Research of a novel 3D printed strain gauge type force sensor," Micromachines, vol. 10, no. 1, 2018, pp. 1-20. https://doi.org/10.3390/mi10010001
  4. M. Manjunath, N. Nagarjuna, G.Uma, M. Umapathy, M. Nayak, and K. Rajanna, "Design, fabrication and testing of reduced graphene oxide strain gauge based pressure sensor with increased sensitivity," Microsystem Technologies, vol. 24, no. 7, 2018, pp. 2969-2981. https://doi.org/10.1007/s00542-018-3782-9
  5. M. Ghanbari and G. Rezazadeh, "Investigating Static and Dynamic Behavior of the Strain Gauge Type Pressure Sensor in Exposure to Thermal Stresses.," Arabian Journal for Science and Engineering, vol. 47, no. 7, 2022, pp. 8931-8944. https://doi.org/10.1007/s13369-021-06443-4
  6. P. Melvas, E. Kalvesten, P. Enoksson, and G. Stemme, "A free-hanging strain-gauge for ultraminiaturized pressure sensors," Sensors and Actuators A Physical, vol. 97, 2002, pp. 75-82. https://doi.org/10.1016/S0924-4247(01)00798-1
  7. S. Park, S. Kwak, and J Yang, "Implementation of wireless measurement system for tire deformation," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 4, 2020, pp. 671-678.
  8. A. Lanzolla, F. Attivissimo, G. Percoco, M. Ragolia, G. Stano, and A. Nisio, "Additive manufacturing for sensors: piezoresistive strain gauge with temperature compensation," Applied Sciences, vol. 12, no. 17, 2022, pp. 8607.
  9. M. Petersen, U. Heckmann, R. Bandorf, V. Gwozdz, S. Schnabel, G. Brauer, and C. Klages, "Me-DLC films as material for highly sensitive temperature compensated strain gauges," Diamond and related materials, vol. 20 no. 5-6 , 2011, pp. 814-818. https://doi.org/10.1016/j.diamond.2011.03.036
  10. P. Tutak, "Application of strain gauges in measurements of strain distribution in complex objects," Journal of Applied Computer Science Methods" vol. 6, no. 2, 2014, pp. 135-145. https://doi.org/10.1515/jacsm-2015-0004
  11. M. Maiwald, C. Werner, V. Zoellmer, and M. Busse, "INKtelligent printed strain gauges," Sensors and Actuators A: Physical vol. 162, no. 2, 2010, pp. 198-201. https://doi.org/10.1016/j.sna.2010.02.019
  12. T. Barker, G. Tewkesbury, D. Sanders, and L. Rogers, "Intelligent Sensors for Intelligent Systems: Fault Tolerant Measurement Methods for Intelligent Strain Gauge Pressure Sensors," In Proc. SAI Intelligent Systems Conference, Amsterdam, Netherlands, 2021, pp. 624-632.
  13. H. Yoon, S. Jung, S. Cho, and J. Lee, "Study of temperature compensation method in mini-cones," Korean Society Civil Engineers Journal of Civil and Environmental Engineering Research, vol. 31, no. 1, 2011, pp. 29-38.
  14. Y. Lee, and H. Jung, "A study on the development of gas turbine temperature sensor for improved durability," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 6, 2020, pp. 1175-1186.