DOI QR코드

DOI QR Code

Evaluation of the acoustic environments of open-plan offices in Korean public buildings

국내 공공건축물 개방형 사무실 음환경 평가

  • Sang Hee Park (Korea Institute of Civil Engineering and Building Technology) ;
  • Hye-Kyung Shin (Korea Institute of Civil Engineering and Building Technology) ;
  • Seung-Min Lee (Korea Institute of Civil Engineering and Building Technology) ;
  • Kyoung Woo Kim (Korea Institute of Civil Engineering and Building Technology)
  • Received : 2022.12.27
  • Accepted : 2023.01.24
  • Published : 2023.01.31

Abstract

Poor indoor acoustic environments negatively affect occupants. Previous research has shown that indoor acoustic environments affect not only task performance and job satisfaction of the occupants, but also their health and well-being. This study aimed for evaluating indoor acoustic environments of open-plan offices located in public buildings in Korea. It also aimed to review the matters that need to be considered in order to improve occupants' acoustic comfort. Indoor noise levels were measured in 13 sites; the measurements were conducted for five consecutive working days from Monday to Friday. The noise levels were evaluated based on the levels recommended by the ISO and the EU ALDREN project. The study found that most of the indoor noise levels measured in the sampled sites during the working hours met the ISO standard. In the case of the levels under unoccupied conditions at night, those at three sites did not meet the recommendation of the ALDREN. In addition, some characteristics of the sites had significant effects on the noise level. Since the exact acoustic performance of the building envelope could not be identified, future research is needed for investigating the relationship between accurate building performance and indoor acoustic environments.

열악한 실내 음환경은 재실자에게 부정적인 영향을 미친다. 선행 연구를 통해 실내 음환경이 재실자의 과업성취도나 직무만족도뿐 아니라 그들의 건강과 웰빙에도 영향을 주는 것으로 알려져왔다. 본 연구는 국내 공공건축물에 위치한 개방형 사무실의 실내 음환경을 평가하고, 재실자의 음환경 쾌적성 향상을 위하여 고려할 필요가 있는 사항을 검토하기 위한 목적으로 수행되었다. 국내 공공건축물에 위치한 13개의 개방형 사무실에서 실내 소음 레벨을 측정하였으며, 측정은 월요일부터 금요일까지 5일간 진행되었다. 측정된 실내 소음 레벨은 ISO 및 EU ALDREN 프로젝트가 개방형 사무실을 대상으로 권장하는 수준을 기반으로 평가하였다. 분석 결과, 근무 시간 동안 재실자가 있는 환경에서의 실내 소음 레벨은 대부분 ISO 기준을 충족하는 것으로 나타났다. 재실자가 없는 심야 시간대의 음환경을 평가한 결과, 3개 사무실의 측정 결과값이 ALDREN의 권장 수준을 충족하지 못하는 것으로 나타났다. 아울러 측정이 진행된 현장의 특성이 실내 소음도에 유의미한 영향을 주는 것으로 나타났다. 건물 외피의 정확한 음향 성능을 파악하는 것이 불가능하였으므로 향후 추가 연구를 통해 건물의 성능과 실내 음환경 간 관계를 규명할 필요가 있다.

Keywords

Acknowledgement

We thank the anonymous reviewers for their careful reading of our manuscript and helpful suggestions. This research was carried out under the KICT Research Program (20220202-001, Design and Construction Optimization for ZEB Implementation of Existing Buildings) funded by the Ministry of Science and ICT.

References

  1. P. A. Nimlyat and M. Z. Kandar. "Appraisal of indoor environmental quality (IEQ) in healthcare facilities: A literature review," SCS, 17, 61-68 (2015).
  2. Y. Geng, W. Ji, B. Lin, and Y. Zhu. "The impact of thermal environment on occupant IEQ perception and productivity," Building and Environ. 121, 158-167 (2017). https://doi.org/10.1016/j.buildenv.2017.05.022
  3. J. A. Hoskins, "Health effects due to indoor air pollution," Indoor and Built Environ. 12, 427-433 (2003). https://doi.org/10.1177/1420326X03037109
  4. Y. A. Horr, M. Arif, A. Kaushik, A. Mazroei, M. Katafygiotou, and E. Elsarrag, "Occupant productivity and office indoor environment quality: A review of the literature," Building and Environ. 105, 369-389 (2016). https://doi.org/10.1016/j.buildenv.2016.06.001
  5. T. Parkinson, A. Parkinson, and R. D. Dear. "Continuous IEQ monitoring system: Performance specifications and thermal comfort classification," Building and Environ. 149, 241-252 (2019). https://doi.org/10.1016/j.buildenv.2018.12.016
  6. E. E. Broday and M. C. G. Silva. "The role of internet of things (IoT) in the assessment and communication of indoor environmental quality (IEQ) in buildings: a review," Smart and Sustainable Built Environ. 11, 1-23 (2022). https://doi.org/10.1108/SASBE-03-2020-0024
  7. World Health Organization, Regional Office for Europe, "Environmental noise guidelines for the European Region," World Health Org., guidelines., 2019.
  8. A. Kaarlela-Tuomaala, R. Helenius, E. Keskinen, and V. Hongisto. "Effects of acoustic environment on work in private office rooms and open-plan offices-longitudinal study during relocation," Ergonomics. 52, 1423-1444 (2009). https://doi.org/10.1080/00140130903154579
  9. S. H. Park, P. J. Lee, B. K. Lee, M. Roskams, and B. P. Haynes, "Associations between job satisfaction, job characteristics, and acoustic environment in open-plan offices," Appl. Acoust. 168, 107425 (2020).
  10. International Organization for Standardization, ISO 22955:2021 - Acoustic Quality of Open Office Spaces, 2021.
  11. European Committee for Standardization, EN 16798- 1:2019 - Energy performance of buildings - Ventilation for buildings - Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics, 2019.
  12. British Standards Institution, BS 8233:2014 - Guidance on sound insulation and noise reduction for buildings, 2014.
  13. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. "Heating, Ventilating, And Air Conditioning Applications," in Handbook of ASHARE, editied by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE, Atlanta, 2015).
  14. ALliance for Deep RENovation in buildings (ALDREN), "D2.4 - ALDREN Methodology note on addressing health and wellbeing," ALDREN., Method. Note., 2017.
  15. The Jamovi Project, Jamovi, Version 2.3 (2022), https://www.jamovi.org, (Last viewed January 28, 2023).
  16. R Core Team. R: A Language and environment for statistical computing, version 4.1 (2021): Retrieved from https://cran.r-project.org (R packages retrieved from MRAN snapshot 2022-01-01).
  17. D. S. Kerby, "The simple difference formula: An approach to teaching nonparametric correlation," Comprehensive Psychol. 3, 2165-2228 (2014). https://doi.org/10.2466/11.IT.3.1
  18. S.-D. Lee, Y.-R. Park, S.-W. Lee, and H.-C. Yoo, "Survey and evaluation for exterior noise of a high rise apartment in Seoul" (in Korean), KIEAE. 4, 95- 101 (2004).
  19. K.-W. Kim, J.-H. Yang, H.-J. Choi, and K.-S. Yang, "A study on the exterior road traffic noise distribution characteristic of apartment housing of the near road" (in Korean), Proc. KIAEBS Annual Conference in Autumn, 231-235 (2007).
  20. M. H. Lee, K. D. Ih, Hwang, S. G. Kim, and Y.-J. Kim "Experimental contribution analysis of external aeroacoustic noise sources to interior noise of automobile" (in Korean), J. Acoust. Soc. Kr. 37, 300-308 (2018).
  21. P.-A. Grumiaux, S. Kitic, L. Girin, and A. Guerin. "A survey of sound source localization with deep learning methods" The J. Acoust. Soc. Am. 152, 107-151 (2022). https://doi.org/10.1121/10.0011809
  22. H.-G. Kim, D.-K. Jeong, and J. Y. Kim, "Electroencephalogram-based emotional stress recognition according to audiovisual stimulation using spatial frequency convolutional gated transformer" (in Korean), J. Acoust. Soc. Kr. 41, 518-524 (2022).