Acknowledgement
This work was supported by a Research Grant of Andong National University
References
- Elfaki AO, Alatawi S, Abushandi E. Using intelligent techniques in construction project cost estimation: 10-year survey. Advances in Civil Engineering. 2014 Dec;2014:107926. https://doi.org/10.1155/2014/107926
- Hashemi TS, Ebadati OM, Kaur H. Cost estimation and prediction in construction projects: a systematic review on machine learning techniques. SN Applied Sciences. 2020 Sep;2:1703. https://doi.org/10.1007/s42452-020-03497-1
- Hatri EC, Boumhidi J. Fuzzy deep learning based urban traffic incident detection. Cognitive Systems Research. 2018 Aug;50:206-13. https://doi.org/10.1016/j.cogsys.2017.12.002
- Salleh MNM, Hussain K. A review of training methods of ANFIS for applications in business and economics. International Journal of u- and e- Service, Science and Technology. 2016 Jul;9(7):165-72. https://doi.org/10.14257/ijunesst.2016.9.7.17
- Talpur N, Abdulkadir SJ, Alhussian H, Hasan MH, Aziz N, Bamhdi A. Deep neuro-fuzzy system application trends, challenges, and future perspectives: a systematic survey. Artificial Intelligence Review. 2022 Apr;56:865-913. https://doi.org/10.1007/s10462-022-10188-3
- Cho HC, Lee DH, Hwang JH, Ju HJ, Kim KS, Seo SY. Shear strength evaluation of steel fiber-reinforced concrete flexural members using ANFIS. Journal of the Architectural Institute of Korea Structure & Construction. 2013 Jun;29(6):3-11. https://doi.org/10.5659/JAIK_SC.2013.29.6.3
- Sim UC, Choi.KK. Prediction of shear strength of slender reinforced concrete beams with and without shear reinforcement using ANFIS. Journal of the Architectural Institute of Korea Structure & Construction. 2013 Dec;29(12):63-71. https://doi.org/ 10.5659/JAIK_SC.2013.29.12.63
- Kim MS, Cho HC, Lee KJ, Hahm KW, Han SJ, Kim KS. Estimation of bond strength of reinforcing bars in reinforced concrete members using ANFIS. Journal of the Architectural Institute of Korea Structure & Construction. 2016 Sep;32(9):27-34. https://doi.org/10.5659/JAIK_SC.2016.32.9.27
- Kim MS, Han SJ, Cho HC, Oh JY, Kim KS. Prediction of transfer lengths in pretensioned concrete members using neuro-fuzzy system. Journal of the Korea Concrete Institute. 2016 Dec;28(6):723-31. https://doi.org/10.4334/JKCI.2016.28.6.723
- Sinha DK, Satavalekar R, Kasilingam S. Application of adaptive neuro-fuzzy inference system for evaluating compressive strength of concrete. International Journal of Fuzzy Logic and Intelligent Systems. 2021 Jun;21(2):176-88. https://doi.org/10.5391/IJFIS.2021.21.2.176
- Khayati GR, Rajabi Z, Ehteshamzadeh M, Beirami H. A hybrid particle swarm optimization with dragonfly for adaptive ANFIS to model the corrosion rate in concrete structures. International Journal of Concrete Structures and Materials. 2022 Jun;28:457-90. https://doi.org/10.1186/s40069-022-00517-9
- Rhee KH, Moon BS, Kang IH. A study of prediction of daily water supply using ANFIS. Journal of Korea Water Resources Association. 1998 Dec;31(6):821-32.
- Lee DJ, Lee JP, Lee CS, Lim HY, Ji PS. Development of PV power prediction algorithm using adaptive neuro-fuzzy model. The Transactions of the Korean Institute of Electrical Engineers P. 2015 Dec;64(4):246-50. https://doi.org/10.5370/KIEEP.2015.64.4.246
- Seo YM, Choi EH, Yeo WK. Reservoir water level forecasting using machine learning models. Journal of The Korean Society of Agricultural Engineers. 2017 May;59(3):97-110. https://doi.org/10.5389/KSAE.2017.59.3.097
- Osorio GJ, Matias JCO, Catalao JPS. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renewable Energy. 2015 Mar;75:301-7. https://doi.org/10.1016/j.renene.2014.09.058
- Ghenai C, Al-Mufti OAA, Al-Isawi OAM, Amirah LHL, Merabet A. Short-term building electrical load forecasting using adaptive neuro-fuzzy inference system (ANFIS). Journal of Building Engineering. 2022 Jul;52:104323. https://doi.org/10.1016/j.jobe.2022.104323
- Hwang DH, Bae YC. A prediction of bid price using MLP and ANFIS. Journal of Korean Institute of Intelligent Systems. 2020 Aug;30(4):309-14. http://dx.doi.org/10.5391/JKIIS.2020.30.4.309
- Cheng MY, Tsai HC, Hsieh WS. Web-based conceptual cost estimates for construction projects using evolutionary fuzzy neural inference model. Automation in Construction. 2009Mar;18(2):164-72. https://doi.org/10.1016/j.autcon.2008.07.001
- Jang J. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans Systems, Man, Cybernetics. 1993 May-Jun;23(3): 665-85. https://doi.org/10.1109/21.256541
- Jerez JM, Molina I, Garcia-Laencina PJ, Alba E, Ribelles N, Martin M, Franco L. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artificial Intelligence in Medicine. 2010 Oct;50(2):105-15. https://doi.org/10.1016/j.artmed.2010.05.002
- Emmanuel T, Maupong T, Mpoeleng D, Semong T, Banyatsang M, Tabona O. A survey on missing data in machine learning. Journal of Big Data. 2021 Jun;8(1):1-37. https://doi.org/10.21203/rs.3.rs-535520/v1