DOI QR코드

DOI QR Code

Prediction of Building Construction Project Costs Using Adaptive Neuro-Fuzzy Inference System(ANFIS)

적응형 뉴로-퍼지(ANFIS)를 이용한 건축공사비 예측

  • Yun, Seok-Heon (Department of Architectural Engineering, GyeongSang National University) ;
  • Park, U-Yeol (Department of Architectural Engineering, Andong National University)
  • Received : 2022.12.26
  • Accepted : 2023.01.12
  • Published : 2023.02.20

Abstract

Accurate cost estimation in the early stages of a construction project is critical to the successful execution of the project. In this study, an ANFIS model was presented to predict construction costs in the early stages of a construction project. To increase the usability of the model, open construction cost data was used, and a model using limited information in the early stage of the project was presented. We analyzed existing studies related to ANFIS to identify recent trends, and after reviewing the basic structure of ANFIS, presented an ANFIS model for predicting conceptual construction costs. The variation in prediction performance depending on the type and number of membership functions of the ANFIS model was analyzed, the model with the best performance was presented, and the prediction accuracy of representative machine learning models was compared and analyzed. Through comparing the ANFIS model with other machine learning models, it was found to show equal or better performance, and it is concluded that it can be applied to predicting construction costs in the early stage of a project.

건설 프로젝트의 초기단계에서 공사비를 정확하게 예측하는 것은 프로젝트를 성공적으로 수행하기 위해 매우 중요하다. 본 연구에서는 ANFIS 모델을 활용하여 건설프로젝트의 초기단계에 건축공사비를 예측할 수 있는 모델을 제시하였다. 모델의 활용도를 높이기 위해 공개된 공사비 데이터를 활용하였으며 프로젝트 초기단계의 제한된 정보를 바탕으로 예측할 수 있는 모델을 제시하고자 하였다. ANFIS와 관련된 기존 연구를 분석하여 최근의 동향을 파악하였으며 ANFIS의 기본 구조를 고찰한 후 건축공사비 예측을 위한 ANFIS 모델을 제시하였다. ANFIS의 모델의 소속함수의 종류와 개수에 따라 달라지는 예측 성능을 분석하여 가장 성능이 우수한 모델을 제시하였으며, 대표적인 기계학습 모델의 예측 정확도와 비교분석하였다. 적용결과 ANFIS 모델을 다른 기계학습 모델과 비교한 결과 동등 이상으로 성능을 나타내 프로젝트 초기단계 공사비 예측에 적용 가능할 것으로 판단된다.

Keywords

Acknowledgement

This work was supported by a Research Grant of Andong National University

References

  1. Elfaki AO, Alatawi S, Abushandi E. Using intelligent techniques in construction project cost estimation: 10-year survey. Advances in Civil Engineering. 2014 Dec;2014:107926. https://doi.org/10.1155/2014/107926
  2. Hashemi TS, Ebadati OM, Kaur H. Cost estimation and prediction in construction projects: a systematic review on machine learning techniques. SN Applied Sciences. 2020 Sep;2:1703. https://doi.org/10.1007/s42452-020-03497-1
  3. Hatri EC, Boumhidi J. Fuzzy deep learning based urban traffic incident detection. Cognitive Systems Research. 2018 Aug;50:206-13. https://doi.org/10.1016/j.cogsys.2017.12.002
  4. Salleh MNM, Hussain K. A review of training methods of ANFIS for applications in business and economics. International Journal of u- and e- Service, Science and Technology. 2016 Jul;9(7):165-72. https://doi.org/10.14257/ijunesst.2016.9.7.17
  5. Talpur N, Abdulkadir SJ, Alhussian H, Hasan MH, Aziz N, Bamhdi A. Deep neuro-fuzzy system application trends, challenges, and future perspectives: a systematic survey. Artificial Intelligence Review. 2022 Apr;56:865-913. https://doi.org/10.1007/s10462-022-10188-3
  6. Cho HC, Lee DH, Hwang JH, Ju HJ, Kim KS, Seo SY. Shear strength evaluation of steel fiber-reinforced concrete flexural members using ANFIS. Journal of the Architectural Institute of Korea Structure & Construction. 2013 Jun;29(6):3-11. https://doi.org/10.5659/JAIK_SC.2013.29.6.3
  7. Sim UC, Choi.KK. Prediction of shear strength of slender reinforced concrete beams with and without shear reinforcement using ANFIS. Journal of the Architectural Institute of Korea Structure & Construction. 2013 Dec;29(12):63-71. https://doi.org/ 10.5659/JAIK_SC.2013.29.12.63
  8. Kim MS, Cho HC, Lee KJ, Hahm KW, Han SJ, Kim KS. Estimation of bond strength of reinforcing bars in reinforced concrete members using ANFIS. Journal of the Architectural Institute of Korea Structure & Construction. 2016 Sep;32(9):27-34. https://doi.org/10.5659/JAIK_SC.2016.32.9.27
  9. Kim MS, Han SJ, Cho HC, Oh JY, Kim KS. Prediction of transfer lengths in pretensioned concrete members using neuro-fuzzy system. Journal of the Korea Concrete Institute. 2016 Dec;28(6):723-31. https://doi.org/10.4334/JKCI.2016.28.6.723
  10. Sinha DK, Satavalekar R, Kasilingam S. Application of adaptive neuro-fuzzy inference system for evaluating compressive strength of concrete. International Journal of Fuzzy Logic and Intelligent Systems. 2021 Jun;21(2):176-88. https://doi.org/10.5391/IJFIS.2021.21.2.176
  11. Khayati GR, Rajabi Z, Ehteshamzadeh M, Beirami H. A hybrid particle swarm optimization with dragonfly for adaptive ANFIS to model the corrosion rate in concrete structures. International Journal of Concrete Structures and Materials. 2022 Jun;28:457-90. https://doi.org/10.1186/s40069-022-00517-9
  12. Rhee KH, Moon BS, Kang IH. A study of prediction of daily water supply using ANFIS. Journal of Korea Water Resources Association. 1998 Dec;31(6):821-32.
  13. Lee DJ, Lee JP, Lee CS, Lim HY, Ji PS. Development of PV power prediction algorithm using adaptive neuro-fuzzy model. The Transactions of the Korean Institute of Electrical Engineers P. 2015 Dec;64(4):246-50. https://doi.org/10.5370/KIEEP.2015.64.4.246
  14. Seo YM, Choi EH, Yeo WK. Reservoir water level forecasting using machine learning models. Journal of The Korean Society of Agricultural Engineers. 2017 May;59(3):97-110. https://doi.org/10.5389/KSAE.2017.59.3.097
  15. Osorio GJ, Matias JCO, Catalao JPS. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renewable Energy. 2015 Mar;75:301-7. https://doi.org/10.1016/j.renene.2014.09.058
  16. Ghenai C, Al-Mufti OAA, Al-Isawi OAM, Amirah LHL, Merabet A. Short-term building electrical load forecasting using adaptive neuro-fuzzy inference system (ANFIS). Journal of Building Engineering. 2022 Jul;52:104323. https://doi.org/10.1016/j.jobe.2022.104323
  17. Hwang DH, Bae YC. A prediction of bid price using MLP and ANFIS. Journal of Korean Institute of Intelligent Systems. 2020 Aug;30(4):309-14. http://dx.doi.org/10.5391/JKIIS.2020.30.4.309
  18. Cheng MY, Tsai HC, Hsieh WS. Web-based conceptual cost estimates for construction projects using evolutionary fuzzy neural inference model. Automation in Construction. 2009Mar;18(2):164-72. https://doi.org/10.1016/j.autcon.2008.07.001
  19. Jang J. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans Systems, Man, Cybernetics. 1993 May-Jun;23(3): 665-85. https://doi.org/10.1109/21.256541
  20. Jerez JM, Molina I, Garcia-Laencina PJ, Alba E, Ribelles N, Martin M, Franco L. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artificial Intelligence in Medicine. 2010 Oct;50(2):105-15. https://doi.org/10.1016/j.artmed.2010.05.002
  21. Emmanuel T, Maupong T, Mpoeleng D, Semong T, Banyatsang M, Tabona O. A survey on missing data in machine learning. Journal of Big Data. 2021 Jun;8(1):1-37. https://doi.org/10.21203/rs.3.rs-535520/v1