DOI QR코드

DOI QR Code

The dynamic response of FG cylindrical beam subjected to bending and the centrifugal force of rotation on the basis of modified size-dependent high-order theories

  • Jun Xiang (Faculty of Architecture and Civil Engineering, Huaiyin Institute of Technology) ;
  • Mengran Xu (College of Civil Engineering and Architecture, Zhejiang University)
  • Received : 2022.07.14
  • Accepted : 2023.01.29
  • Published : 2023.01.25

Abstract

This paper examines the dynamic response of rotating nanodevices under the external harmonic load. The spinning nanosystem is made of nanoscale tubes that rotate around the central nanomotor and is mathematically modeled via high-order beam theory as well as nonclassical nonlocal theory for the size impact. According to the Hamilton principle, the dynamic motion equations are derived, then the time-dependent results are obtained using the Newmark Beta technique along with the generalized differential quadratic method. The presented results are discussed dynamic deflection, resonant frequency, and natural frequency in response to the different applicable parameters, which help develop and produce nanoelectromechanical systems (NEMS) for various applications.

Keywords

References

  1. Abazid, M.A. (2019), "The nonlocal strain gradient theory for hygrothermo-electromagnetic effects on buckling, vibration and wave propagation in piezoelectromagnetic nanoplates", Int. J. Appl. Mech., 11(07), 1950067. https://doi.org/10.1142/S1758825119500674
  2. Adamian, A., Safari, K.H., Sheikholeslami, M., Habibi, M., Al-Furjan, M. and Chen, G. (2020), "Critical Temperature and Frequency Characteristics of GPLs-Reinforced Composite Doubly Curved Panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251
  3. Aifantis, E.C. (1999), "Strain gradient interpretation of size effects", Fract. Scaling, pp. 299-314.
  4. Akgoz, B. and Civalek, O. (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009
  5. Al-Furjan, M., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2020a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 255, 112990. https://doi.org/10.1016/j.compstruct.2020.112990
  6. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020b), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 38, 3675-3697. https://doi.org/10.1007/s00366-020-01177-7
  7. Al-Furjan, M.S.H., Bolandi, S.Y., Shan, L., Habibi, M. and Jung, D.w. (2020c), "On the vibrations of a high-speed rotating multi-hybrid nanocomposite reinforced cantilevered microdisk", Mech. Based Des. Struct. Mach., 50(12), 4157-4185. https://doi.org/10.1080/15397734.2020.1828098
  8. Al-Furjan, M.S.H., Habibi, M., rahimi, A., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020d), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 38, 219-242. https://doi.org/10.1007/s00366-020-01144-2
  9. Al-Furjan, M.S.H., Bolandi, S.Y., Habibi, M., Ebrahimi, F., Chen, G. and Safarpour, H. (2021a), "Enhancing vibration performance of a spinning smart nanocomposite reinforced microstructure conveying fluid flow", Eng. Comput., 38, 4097-4112. https://doi.org/10.1007/s00366-020-01255-w
  10. Al-Furjan, M.S.H., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2021b), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 255, 112990. https://doi.org/10.1016/j.compstruct.2020.112990
  11. Al-Furjan, M.S.H., Habibi, M., Jung, D.w., Chen, G., Safarpour, M. and Safarpour, H. (2021c), "Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel", Eur. J. Mech. - A/Solids, 85, 104091. https://doi.org/10.1016/j.euromechsol.2020.104091
  12. Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
  13. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5
  14. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455
  15. Babaei, A. (2019), "Longitudinal vibration responses of axially functionally graded optimized MEMS gyroscope using Rayleigh-Ritz method, determination of discernible patterns and chaotic regimes", SN Appl. Sci., 1(8), 831. https://doi.org/10.1007/s42452-019-0867-8
  16. Bahaadini, R. and Saidi, A.R. (2018), "Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow", Aerosp. Sci. Technol., 80, 381-391. https://doi.org/10.1016/j.ast.2018.06.035
  17. Bakhshi Khaniki, H., Hosseini Hashemi, S. and Bakhshi Khaniki, H. (2016), "Free Vibration Analysis of Functionally Graded Materials Non-uniform Beams", Int. J. Eng., 29(12), 1734-1740. https://www.ije.ir/article_72847.html https://doi.org/10.5829/idosi.ije.2016.29.12c.12
  18. Bakhshi Khaniki, H. and Hosseini-Hashemi, S. (2017), "Dynamic transverse vibration characteristics of nonuniform nonlocal strain gradient beams using the generalized differential quadrature method", Eur. Phys. J. Plus, 132(11), 500. https://doi.org/10.1140/epjp/i2017-11757-4
  19. Barati, M.R. and Shahverdi, H. (2017), "An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position", Mech. Adv. Mater. Struct., 24(10), 840-853. https://doi.org/10.1080/15376494.2016.1196788
  20. Barooti, M.M., Safarpour, H. and Ghadiri, M. (2017), "Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations", Eur. Phys. J. Plus, 132(1), 1-21. https://doi.org/10.1140/epjp/i2017-11275-5
  21. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., Int. J., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009
  22. Cao, Y., Zhao, N., Xu, N., Zhao, X. and Alsaadi, F.E. (2022), "Minimal-Approximation-Based Adaptive Event-Triggered Control of Switched Nonlinear Systems with Unknown Control Direction", Electronics, 11(20), 3386. https://doi.org/10.3390/electronics11203386
  23. Chang, Y., Niu, B., Wang, H., Zhang, L., Ahmad, A.M. and Alassafi, M.O. (2022), "Adaptive tracking control for nonlinear system in pure-feedback form with prescribed performance and unknown hysteresis", IMA J. Mathe. Control Inform., 39(3), 892-911. https://doi.org/10.1093/imamci/dnac015
  24. Cheng, F., Liang, H., Wang, H., Zong, G. and Xu, N. (2022), "Adaptive Neural Self-Triggered Bipartite Fault-Tolerant Control for Nonlinear MASs With Dead-Zone Constraints", IEEE Transact. Automat. Sci. Eng., 1-12. https://doi.org/10.1109/TASE.2022.3184022
  25. Civalek, O. (2017), "Discrete singular convolution method for the free vibration analysis of rotating shells with different material properties", Compos. Struct., 160, 267-279. https://doi.org/10.1016/j.compstruct.2016.10.031
  26. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., Int. J., 10(2), 175-189. https://doi.org/10.12989/anr.2021.10.2.175
  27. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599
  28. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., Int. J., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  29. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781
  30. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499
  31. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., Int. J., 5(2), 141-169. https://doi.org/10.12989/anr.2017.5.2.141
  32. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  33. Fang, Q., Liu, X., Zeng, K., Zhang, X., Zhou, M. and Du, J. (2022), "Centrifuge modelling of tunnelling below existing twin tunnels with different types of support", Undergr. Space, 7(6), 1125-1138. https://doi.org/10.1016/j.undsp.2022.02.007
  34. Fang, Q., Wang, G., Du, J., Liu, Y. and Zhou, M. (2023), "Prediction of tunnelling induced ground movement in clay using principle of minimum total potential energy", Tunnell. Undergr. Space Technol., 131, 104854. https://doi.org/10.1016/j.tust.2022.104854
  35. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9
  36. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723
  37. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003
  38. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527
  39. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3
  40. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5
  41. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8
  42. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x
  43. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770
  44. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. 20.1001.1.20083505.2017.9.2.8.5 20.1001.1.20083505.2017.9.2.8.5
  45. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., Int. J., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197
  46. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6
  47. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021), "An intelligent computer method for vibration responses of the spinning multi-layer symmetric nanosystem using multi-physics modeling", Eng. Comput., 38, 4217-4238. https://doi.org/10.1007/s00366-021-01433-4
  48. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus, 134(6), 307. https://doi.org/10.1140/epjp/i2019-12742-7
  49. Hadipeykani, M., Aghadavoudi, F. and Toghraie, D. (2020), "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study", Physica A: Statist. Mech. Applicat., 546, 123995. https://doi.org/10.1016/j.physa.2019.123995
  50. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Waves Random Complex Media, 31(6), 1340-1366. https://doi.org/10.1080/17455030.2019.1662968
  51. Hou, D., Yu, J. and Wang, P. (2019), "Molecular dynamics modeling of the structure, dynamics, energetics and mechanical properties of cement-polymer nanocomposite", Compos. Part B: Eng., 162, 433-444. https://doi.org/10.1016/j.compositesb.2018.12.142
  52. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 38, 3217-3235. https://doi.org/10.1007/s00366-021-01456-x
  53. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 38, 2481-2498. https://doi.org/10.1007/s00366-021-01395-7
  54. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  55. Khaniki, H.B. (2018), "On vibrations of nanobeam systems", International Journal of Engineering Science, 124, 85-103. https://doi.org/10.1016/j.ijengsci.2017.12.010
  56. Khaniki, H.B. (2019), "On vibrations of FG nanobeams", Int. J. Eng. Sci., 135, 23-36. https://doi.org/10.1016/j.ijengsci.2018.11.002
  57. Khaniki, H.B., Hosseini-Hashemi, S. and Khaniki, H.B. (2018a), "Dynamic analysis of nano-beams embedded in a varying nonlinear elastic environment using Eringen's two-phase local/nonlocal model", Eur. Phys. J. Plus, 133(7), 283. https://doi.org/10.1140/epjp/i2018-12128-5
  58. Khaniki, H.B., Hosseini-Hashemi, S. and Nezamabadi, A. (2018b), "Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method", Alexandria Eng. J., 57(3), 1361-1368. https://doi.org/10.1016/j.aej.2017.06.001
  59. Koutoati, K., Mohri, F., Daya, E.M. and Carrera, E. (2021), "A finite element approach for the static and vibration analyses of functionally graded material viscoelastic sandwich beams with nonlinear material behavior", Compos. Struct., 274, 114315. https://doi.org/10.1016/j.compstruct.2021.114315
  60. Larkin, K., Ghommem, M., Serrano, M. and Abdelkefi, A. (2021), "A review on vibrating beam-based micro/nano-gyroscopes", Microsyst. Technol., 27(12), 4157-4181. https://doi.org/10.1007/s00542-020-05191-z
  61. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 38, 703-724. https://doi.org/10.1007/s00366-020-01166-w
  62. Li, P., Yang, M. and Wu, Q. (2021), "Confidence Interval Based Distributionally Robust Real-Time Economic Dispatch Approach Considering Wind Power Accommodation Risk", IEEE Transact. Sustain. Energy, 12(1), 58-69. https://doi.org/10.1109/TSTE.2020.2978634
  63. Liao, D., Zhu, S.-P., Keshtegar, B., Qian, G. and Wang, Q. (2020), "Probabilistic framework for fatigue life assessment of notched components under size effects", Int. J. Mech. Sci., 181, 105685. https://doi.org/10.1016/j.ijmecsci.2020.105685
  64. Liu, Z., Li, J., Zhou, C. and Zhu, W. (2018), "A molecular dynamics study on thermal and rheological properties of BNNS-epoxy nanocomposites", Int. J. Heat Mass Transfer, 126, 353-362. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.149
  65. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct. Mach., 50(8), 2688-2713. https://doi.org/10.1080/15397734.2020.1784201
  66. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 38, 3631-3653. https://doi.org/10.1007/s00366-021-01454-z
  67. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577
  68. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., Int. J., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415
  69. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Thermal Stresses, 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962
  70. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871
  71. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1
  72. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023
  73. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(01), 2050010. https://doi.org/10.1142/S1758825120500106
  74. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020b), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37, 3359-3374. https://doi.org/10.1007/s00366-020-01002-1
  75. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155. https://dergipark.org.tr/en/pub/sigma/issue/65585/1016455#article_cite 1016455#article_cite
  76. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dentistry, 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002
  77. Oyarhossein, M.A., Alizadeh, A.a., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Scientif. Reports, 10(1), 5616. https://doi.org/10.1038/s41598-020-61855-w
  78. Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015
  79. Parmar, J., Vilela, D., Villa, K., Wang, J. and Sanchez, S. (2018), "Micro-and nanomotors as active environmental microcleaners and sensors", J. Am. Chem. Soc., 140(30), 9317-9331. https://doi.org/10.1021/jacs.8b05762
  80. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019
  81. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045
  82. Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004
  83. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low-dimens. Syst. Nanostruct., 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011
  84. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y
  85. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007
  86. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008
  87. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009
  88. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007
  89. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024
  90. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Mathe. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061
  91. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025
  92. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048
  93. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Methods Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007
  94. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982
  95. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/JSM.2019.563759.1273
  96. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3
  97. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707
  98. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9
  99. Si, Z., Yang, M., Yu, Y. and Ding, T. (2021), "Photovoltaic power forecast based on satellite images considering effects of solar position", Appl. Energy, 302, 117514. https://doi.org/10.1016/j.apenergy.2021.117514
  100. Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3), 195-220. https://doi.org/10.1007/BF01176650
  101. Tadi Beni, Y., Mehralian, F. and Zeighampour, H. (2016), "The modified couple stress functionally graded cylindrical thin shell formulation", Mech. Adv. Mater. Struct., 23(7), 791-801. https://doi.org/10.1080/15376494.2015.1029167
  102. Tan, J., Liu, L., Li, F., Chen, Z., Chen, G.Y., Fang, F., Guo, J., He, M. and Zhou, X. (2022), "Screening of endocrine disrupting potential of surface waters via an affinity-based biosensor in a rural community in the Yellow River Basin, China", Environ. Sci. Technol., 56(20), 14350-14360. https://doi.org/10.1021/acs.est.2c01323
  103. Thai, H.-T. and Kim, S.-E. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99, 172-180. https://doi.org/10.1016/j.compstruct.2012.11.030
  104. Wang, Y.-G., Lin, W.-H. and Liu, N. (2013), "Nonlinear free vibration of a microscale beam based on modified couple stress theory", Physica E: Low-dimens. Syst. Nanostruct., 47, 80-85. https://doi.org/10.1016/j.physe.2012.10.020
  105. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284
  106. Wang, M., Yang, M., Fang, Z., Wang, M. and Wu, Q. (2022a), "A Practical Feeder Planning Model for Urban Distribution System", IEEE Transact. Power Syst., 1-1. https://doi.org/10.1109/TPWRS.2022.3170933
  107. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022b), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007
  108. Wei, G., Zhao, Y. and Xiang, Y. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm", Int. J. Numer. Methods Eng., 55(8), 913-946. https://doi.org/10.1002/nme.526
  109. Wen, H., Daruwalla, A., Liu, C.S. and Ayazi, F. (2018), "A High-Frequency Resonant Framed-Annulus Pitch or Roll Gyroscope for Robust High-Performance Single-Chip Inertial Measurement Units", J. Microelectromech. Syst., 27(6), 995-1008. https://doi.org/10.1109/JMEMS.2018.2875115
  110. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 38, 4217-4143. https://doi.org/10.1007/s00366-021-01396-6
  111. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395
  112. Xu, H., He, T., Zhong, N., Zhao, B. and Liu, Z. (2022a), "Transient thermomechanical analysis of micro cylindrical asperity sliding contact of SnSbCu alloy", Tribol. Int., 167, 107362. https://doi.org/10.1016/j.triboint.2021.107362
  113. Xu, L., Cai, M., Dong, S., Yin, S., Xiao, T., Dai, Z., Wang, Y. and Reza Soltanian, M. (2022b), "An upscaling approach to predict mine water inflow from roof sandstone aquifers", J. Hydrol., 612, 128314. https://doi.org/10.1016/j.jhydrol.2022.128314
  114. Yang, Y., Hu, K., Zhang, P., Zhou, P., Duan, X., Sun, H. and Wang, S. (2021), "Manganese-Based Micro/Nanomotors: Synthesis, Motion, and Applications", Small, 17(50), 2100927. https://doi.org/10.1002/smll.202100927
  115. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., Int. J., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469
  116. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022a), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 45, 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094
  117. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022b), "Numerical Study on Welding Residual Stress Distribution of Corrugated Steel Webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831
  118. Zhang, Y., Liu, G., Ye, J. and Lin, Y. (2022c), "Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness", Compos. Struct., 299, 116087. https://doi.org/10.1016/j.compstruct.2022.116087
  119. Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), "Discrete singular convolution for the prediction of high frequency vibration of plates", Int. J. Solids Struct., 39(1), 65-88. https://doi.org/10.1016/S0020-7683(01)00183-4
  120. Zhao, S., Zhang, Y., Yang, J. and Kitipornchai, S. (2021), "Significantly improved interfacial shear strength in graphene/copper nanocomposite via wrinkles and functionalization: A molecular dynamics study", Carbon, 174, 335-344. https://doi.org/10.1016/j.carbon.2020.12.026
  121. Zhao, Y., Wang, H., Xu, N., Zong, G. and Zhao, X. (2023), "Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems", Chaos, Solitons Fract., 167, 113034. https://doi.org/10.1016/j.chaos.2022.113034
  122. Zhou, L. (2022), "Computerized responses of spinning NEMS via numerical and mathematical modeling", Struct. Eng. Mech., Int. J., 82(5), 629-641. https://doi.org/10.12989/sem.2022.82.5.629
  123. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., Int. J., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295