• Title/Summary/Keyword: spinning structures

Search Result 53, Processing Time 0.027 seconds

Resonance behavior of functionally graded carbon nanotube-reinforced composites shells with spinning motion and axial motion

  • Jia-Qin Xu;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.325-335
    • /
    • 2023
  • The missile is affected by both spinning and axial motion during its movement, which will have a very adverse impact on the stability and reliability of the missile. This paper regards missiles as cylindrical shell structures with spinning and axial motion. In this article, the forced vibration of carbon nanotube-reinforced composites (CNTRCs) cylindrical shells with spinning motion and axial motion is investigated, in which the clamped-clamped and simply-simply supported boundary conditions are considered. The displacement field is described by the first-order shear theory, and the vibration equation is deduced by using the Euler-Lagrange equation, after dimensionless processing, the dimensionless equation of motion is obtained. The correctness of this paper is verified by comparing with the results of the existing literature, in which the simply-simply supported ends are taken into account. In the end, the effects of different parameters such as spinning velocity, axial velocity, carbon nanotube volume fraction, length thickness ratio and load position on the resonance behavior of cylindrical shells are given. It can be found that these parameters can significantly change the resonance of axially moving and rotating moving CNTRCs cylindrical shells.

Control Effects on the Aerodynamic Forces and Wake Structures by a Spinning Cylinder in Staggered Arrangement (엇갈림 배열에서 회전원주에 의한 정지원주의 공력 및 후류유동 제어)

  • 부정숙;류병남;심정훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.857-868
    • /
    • 2001
  • The aerodynamic forces and wake structures of the non-rotating downstream cylinder which is located behind the spinning upstream cylinder in tandem and staggered arrangement have been investigated by experimental method at Re= $1.32{\times}10^4$. The measurements of wake flow and pressure distributions of downstream cylinder are carried out in various spin parameters by combination of both longitudinal spacing rations L/d=1.5, 3.0, 4.5 and transverse spacing ratios T/d =0.0, -0.5, 0.5. For the present experiment, it has been found that the spin parameter of spinning upstream cylinder affect more easily the downstream cylinder in tandem arrangement than that in staggered arrangement.

  • PDF

Parametric resonance of a spinning graphene-based composite shaft considering the gyroscopic effect

  • Neda Asadi;Hadi Arvin;Yaghoub Tadi Beni;Krzysztof Kamil Zur
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.457-471
    • /
    • 2024
  • In this research, for the first time the instability boundaries for a spinning shaft reinforced with graphene nanoplatelets undergone the principle parametric resonance are determined and examined taking into account the gyroscopic effect. In this respect, the extracted equations of motion in our previous research (Ref. Asadi et al. (2023)) are implemented and efficiently upgraded. In the upgraded discretized equations the effect of the Rayleigh's damping and the varying spinning speed is included that leads to a different dynamical discretized governing equations. The previous research was about the free vibration analysis of spinning graphene-based shafts examined by an eigen-value problem analysis; while, in the current research an advanced mechanical analysis is addressed in details for the first time that is the dynamics instability of the aforementioned shaft subjected to the principal parametric resonance. The spinning speed of the shaft is considered to be varied harmonically as a function of time. Rayleigh's damping effect is applied to the governing equations in order to regard the energy loss of the system. Resorting to Bolotin's route, Floquet theory and β-Newmark method, the instability region and its accompanied boundaries are defined. Accordingly, the effects of the graphene nanoplatelet on the instability region are elucidated.

Three-Dimensional Numerical Analysis of Spinning Detonation Wave (Spinning Detonation 파의 3차원 수치 해석)

  • Cho, Deok-Rae;Choi, Jeong-Yeol;Won, Su-Hee
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.205-212
    • /
    • 2006
  • Three-dimensional numerical study was carried out for the investigation of the detonation wave structures propagating in tubes. Fluid dynamics equations and conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The variable gas properties between unburned and burned states were considered by using variable specific heat ratio formulation. The unsteady computational results in three-dimension show the detailed mechanisms of rectangular and diagonal mode of detonation wave instabilities resulting same cell length but different cell width in smoked-foil record. The results for the small reaction constant shows the spinning mode of three-dimensional detonation wave dynamics, which was rarely observed in the previous numerical simulation of the detonation waves.

  • PDF

Turbulent Wake Structure Behind a Spinning Circular Cylinder (회전하는 원주후류의 2차원 난류구조)

  • 부정숙;김경천;류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.39-49
    • /
    • 1992
  • The coherent wake structures behind a spinning cylinder placed in a uniform flow were experimentally investigated by means of phase averaging technique. With a fixed cylinder Reynolds number (Re=6,600), the conditionally sampled velocity vectors were obtained at a section of 3.0 and 10 diameters behind the cylinder for the range of spin parameter S(the ratio of the peripheral velocity to that of the uniform flow) 0 to 2. Spectral analysis and vorticity contours of the velocity data show that up to S=1.2, a Karman vortex street exists within the wake, however, the coherent structures become obscure and their vorticity strength decreases as S increase. Beyond S=1.2, a distinct vortex shedding frequency no longer exists, furthermore coherent structures disappear when S is over 1.6.

  • PDF

Solid-state NMR Study on Membrane Protein Structure in Biological Condition

  • Kang, Su-Jin;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2012
  • Membrane proteins play a essential role in the biological systems and it is not easy to handle a membrane protein for its structural study. Solid-state NMR (ssNMR) can be a good tool to investigate the structures and dynamics of membrane proteins. In ssNMR, Magic Angle Spinning (MAS) and Cross Polarization (CP) can be utilized to reduce the line-broadening, leading to high resolution and sensitivity in the spectrum. ssNMR, if combined with other spectroscopic methods, can provide us a enough knowledge on structures and dynamics of membrane proteins in biological condition.

Disintegration of Mesoporous Structures of MCM-41 and MCM-48 in Water

  • Kim, Ji Man;Ryu, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.66-68
    • /
    • 1996
  • It has been found that mesoporous structures of MCM-41 and MCM-48 disintegrate readily in distilled water around 370 K, while the structures can be stable in 100%-steam of 1 atmospheric pressure at much higher temperatures around 820 K. Thus, the structure disintegration is thermodynamically more favorable in water than under the steaming condition. X-ray powder diffraction and magic angle spinning 29Si NMR spectroscopy indicate that the disintegration of the mesoporous structures in water occurs due to silicate hydrolysis.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

Research on Preparation of Sheath-Core Bicomponent Composite Ion Exchange Fibers and Absorption Properties to Metal Ion

  • Ding, Zhi-Jia;Qi, Lu;Ye, Jian-Zhong
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2008
  • Based on the sheath-core bicomponent composite fibers with modified polystyrene (PS) and the modified polypropylene (PP), composite fibers obtained were further cross-linked and sulphonated with chlorosulphonic acid to produce strong acidic cation ion exchange fibers. The structures of the fibers obtained were characterized using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) etc. The optimal technology of the fibers obtained is discussed. The static absorption capacity of the sheath-core bicomponent composite cation exchange fibers for $Zn^{2+}$, $Cu^{2+}$ was determined. The absorption kinetics and major factors affecting the absorption capacities of $Zn^{2+}$, $Cu^{2+}$ were studied, and its chemical stability and regenerating properties were probed. The results suggest that cation exchange fibers with better mechanical properties and higher exchange capability were obtained. Moreover, this type of ion exchange fiber has good absorption properties and working stability to various metal ions. Hence, they have higher practicability.