Acknowledgement
This work was supported by the financial support from the National Natural Science Foundation of China (51978589, 51778544), and the Fundamental Research Funds for the Central Universities (2682021CG014).
References
- Argentini, T., Ozkan, E., Rocchi, D., Rosa, L. and Zasso, A. (2011), "Cross-wind effects on a vehicle crossing the wake of a bridge pylon", J. Wind Eng. Ind. Aerod., 99(6-7), 734-740. https://doi.org/10.1016/j.jweia.2011.01.021.
- Baker, C.J. (2010), "The simulation of unsteady aerodynamic cross wind forces on trains", J. Wind Eng. Ind. Aerod., 98(2), 88-99. https://doi.org/10.1016/j.jweia.2009.09.006.
- Bao, Y.L., Xiang, H.Y., Li, Y. L., Yu, C.J. and Wang, Y.C. (2019), "Study of wind-vehicle-bridge system of suspended monorail during the meeting of two trains", Adv. Struct. Eng., 22(8), 1988-1997. https://doi.org/10.1177/1369433219830255.
- Bao, Y., Zhai, W., Cai, C., Zhu, S. and Li, Y. (2021), "Dynamic interaction analysis of suspended monorail vehicle and bridge subject to crosswinds", Mech. Syst. Sig. Processing, 156, 107707. https://doi.org/10.1016/j.ymssp.2021.107707.
- Cao, Y.H., Xiang, H.F. and Zhou, Y. (2000), "Simulation of stochastic wind velocity field on long-span bridges", J. Eng. Mech.-ASCE, 126(1), 1-6. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(1).
- Charuvisit, S., Kimura, K. and Fujino, Y. (2004), "Experimental and semi-analytical studies on the aerodynamic forces acting on a vehicle passing through the wake of a bridge tower in cross wind", J. Wind Eng. Ind. Aerod., 92(9), 749-780. https://doi.org/10.1016/j.jweia.2004.04.001.
- Cheli, F., Corradi, R. and Tomasini, G. (2012), "Crosswind action on rail vehicles: a methodology for the estimation of the characteristic wind curves", J. Wind Eng. Ind. Aerod., 104(SI), 248-255. https://doi.org/10.1016/j.jweia.2012.04.006.
- De, F.J., Cuong, P.T. and Faria, R. (2015), "Modeling of cement hydration in high performance concrete structures with hybrid finite elements", Int. J. Numer. Meth. Eng., 103(5), 364-390. https://doi.org/10.1002/nme.4895.
- Deodatis, G. (1996), "Simulation of ergodic multivariate stochastic processes", J. Eng. Mech.-ASCE, 122(8), 778-787. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778).
- Ge, G.H., Zhang, N. and Zhou, S. (2014), "Analysis on windvehicle-bridge dynamic interaction when trian pass through the tower region of long-span bridge", Scientia Sinica Technologica, 44(7), 793-800. https://doi.org/10.1360/N092014-00090.
- Han, X., Xiang, H., Li, Y. and Wang, Y. (2019), "Predictions of vertical train-bridge response using artificial neural networkbased surrogate model", Adv. Struct. Eng., 22(12), 2712-2723. https://doi.org/10.1177/1369433219849809.
- Han, Y., Li, K., He, X., Chen, S. and Xue, F. (2018), "Stress analysis of a long-span steel-truss suspension bridge under combined action of random traffic and wind loads", J. Aeros. Eng., 31(3), 04018021. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000843.
- He, W., Guo, X.R., Zhu, Z.H., Deng, P. and He, X.H. (2020), "Effects of wind barriers on running safety of trains for urban rail cable-stayed bridge", Wind Struct., 31(1), 43-57. http://dx.doi.org/10.12989/was.2020.31.1.043.
- Li, Y., Hu, P., Cai, C.S., Zhang, M. and Qiang, S. (2013), "Wind tunnel study of a sudden change of train wind loads due to the wind shielding effects of bridge towers and passing trains", J. Eng. Mech., 139(9), 1249-1259. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000559.
- Li, Y., Qiang, S., Liao, H. and Xu, Y.L. (2005), "Dynamics of wind-rail vehicle-bridge systems", J. Wind Eng. Ind. Aerod., 93(6), 483-507. https://doi.org/10.1016/j.jweia.2005.04.001.
- Ma, L., Zhou, D., Han, W., Wu, J. and Liu, J. (2016), "Transient aerodynamic forces of a vehicle passing through a bridge tower's wake region in crosswind environment", Wind Struct., 22(2), 211-234. http://dx.doi.org/10.12989/was.2016.22.2.211.
- Olmos, J.M. and Astiz, M.A. (2018), "Improvement of the lateral dynamic response of a high pier viaduct under turbulent wind during the high-speed train travel", Eng. Struct., 165, 368-385. https://doi.org/10.1016/j.engstruct.2018.03.054.
- Qin, S.Q. and Gao, Z.Y. (2017), "Developments and prospects of long-span high-speed railway bridge technologies in China", Engineering, 3(6), 787-794. https://doi.org/10.1016/j.eng.2017.11.001.
- Qin, S., Xu, W., Lu, Q., Zheng, Q., Fu, Z., Yuan, R. and Sun, J. (2020), "Overall design and concept development for main navigational channel bridge of Changtai Changjiang River Bridge", Bridge Construct., 50(3), 1-10.
- Rocchi, D., Rosa, L., Sabbioni, E., Sbrosi, M. and Belloli, M. (2012), "A numerical-experimental methodology for simulating the aerodynamic forces acting on a moving vehicle passing through the wake of a bridge tower under cross wind", J. Wind Eng. Ind. Aerod., 104(SI), 256-265. https://doi.org/10.1016/j.jweia.2012.03.012.
- Salati, L., Schito, P., Rocchi, D. and Sabbioni, E. (2018), "Aerodynamic study on a heavy truck passing by a bridge pylon under crosswinds using CFD", J. Bridge Eng., 23(9), 04018065. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001277.
- Togbenou, K., Li, Y., Chen, N. and Liao, H. (2016), "An efficient simulation method for vertically distributed stochastic wind velocity field based on approximate piecewise wind spectrum", J. Wind Eng. Ind. Aerod., 151, 48-59. https://doi.org/10.1016/j.jweia.2016.01.005.
- Wang, B., Xu, Y. L., Zhu, L. D. and Li, Y.L. (2014), "Crosswind effect studies on road vehicle passing by bridge tower using computational fluid dynamics", Eng. Appl. Comput. Fluid Mech., 8(3), 330-344. https://doi.org/10.1080/19942060.2014.11015519.
- Wang, L., Shen, R., Wang, C., Zhang, S. and Wang, Y. (2019), "Theoretical and experimental studies of the antislip capacity between cable and saddle equipped with horizontal friction plates", J. Bridge Eng., 24(4), 04019005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001360.
- Wang, Y., Xia, H., Guo, W., Zhang, N. and Wang, S. (2018), "Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind", Wind and Structures, 27(1), 29-40. https://doi.org/10.12989/was.2018.27.1.029.
- Wang, Z.W., Zhang, W.M., Tian, G.M. and Liu, Z. (2020), "Joint values determination of wind and temperature actions on long - span bridges: Copula-based analysis using long-term meteorological data", Eng. Struct., 219, 110866. https://doi.org/10.1016/j.engstruct.2020.110866.
- Wu, M.X., Li, Y.L. and Zhang, W. (2017), "Impacts of wind shielding effects of bridge tower on railway vehicle running performance", Wind Struct., 25(1), 63-77. http://dx.doi.org/10.12989/was.2017.25.1.063.
- Xiang, H., Li, Y., Chen, S. and Li, C. (2017), "A wind tunnel test method on aerodynamic characteristics of moving vehicles under crosswinds", J. Wind Eng. Ind. Aerod., 163, 15-23. https://doi.org/10.1016/j.jweia.2017.01.013.
- Xiang, H., Tang, P., Zhang, Y. and Li, Y. (2020), "Random dynamic analysis of vertical train-bridge systems under small probability by surrogate model and subset simulation with splitting", Railway Eng. Sci., 28(3), 305-315. https://doi.org/10.1007/s40534-020-00219-6.
- Yan, J., Chen, T., Deng, E., Yang, W., Cheng, S. and Zhang, B. (2021), "Aerodynamic response and running posture analysis when the train passes a crosswind region on a bridge", Appl. Sci.-Basel, 11(9), 4126. https://doi.org/10.3390/app11094126.
- Zhang, J., Zhang, M., Huang, B., Li, Y., Yu, J. and Jiang, F. (2021), "Wind tunnel test on local wind field around the bridge tower of a truss girder", Adv. Civil Eng., 2021, 8867668. https://doi.org/10.1155/2021/8867668.
- Zhang, N., Ge, G., Xia, H., & Li, X. (2015), "Dynamic analysis of coupled wind-train-bridge system considering tower shielding and triangular wind barriers", Wind Struct., 21(3), 311-329. http://dx.doi.org/10.12989/was.2015.21.3.311.
- Zhang, Q.W., Su, C.Q. and Wang, Y.P. (2020), "Numerical investigation on aerodynamic performance and stability of a sedan under wind-bridge-tunnel road condition", Alexandria Eng. J., 59(5), 3963-3980. https://doi.org/10.1016/j.aej.2020.07.004.
- Zhang, T., Xia, H. and Guo, W.W. (2018), "Analysis on running safety of train on the bridge considering sudden change of wind load caused by wind barriers", Front. Struct. Civil Eng., 12(4), 558-567. https://doi.org/10.1007/s11709-017-0455-1.
- Zhang, T., Xia, H. and Guo, W. (2016), "Study on influences of wind shielding effect of pylon of long span bridge on aerodynamic parameters of trains", Bridge Construct., 46(3), 63-68.