DOI QR코드

DOI QR Code

Ultraviolet-activated peracetic acid treatment-enhanced Arabidopsis defense against Pseudomonas syringae pv. tomato DC3000

  • Min Cho (SELS center, Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University) ;
  • Se-Ri Kim (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Injun Hwang (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kangmin Kim (SELS center, Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University)
  • 투고 : 2023.10.18
  • 심사 : 2023.11.06
  • 발행 : 2023.11.17

초록

Disinfecting water containing pathogenic microbes is crucial to the food safety of fresh green agricultural products. The UV-activated peracetic acid (UV/PAA) treatment process is an efficient advanced oxidation process (AOP) and a versatile approach to disinfecting waterborne pathogens. However, its effects on plant growth remain largely unknown. This study found that low-dose UV/PAA treatment induced moderate oxidative stress but enhanced the innate immunity of Arabidopsis against Pseudomonas syringae pv. (Pst) DC3000. When applied as water sources, 5- and 10-ppm UV/PAA treatments slightly reduced biomass and root elongation in Arabidopsis seedlings grown under hydroponic conditions. Meanwhile, treatments of the same doses enhanced defense against Pst DC3000 infection in leaves. Accumulation of hydrogen peroxide and callose increased in UV/PAA-treated Arabidopsis samples, and during the post-infection period, UV/PAA-treated seedlings maintained vegetative growth, whereas untreated seedlings showed severe growth retardation. Regarding molecular aspects, priming-related defense marker genes were rapidly and markedly upregulated in UV/PAA-treated Arabidopsis samples. Conclusively, UV/PAA treatment is an efficient AOP for disinfecting water and protecting plants against secondary pathogenic attacks.

키워드

과제정보

This work was supported by National Research Foundation of Korea (NRF-2020R1I1A1A01069595) and the Cooperative Research Program for Agricultural Science and Technology Development (project numbers RS-2023-00230820) and the Rural Development Administration, the Republic of Korea. The authors declare that they have no conflicts of interest.

참고문헌

  1. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399. http://doi.org/10.1146/annurev.arplant.55.031903.141701
  2. Beckers GJ, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10(4):425-431. http://doi.org/10.1016/j.pbi.2007.06.002
  3. Biswal BK, Khairallah R, Bibi K, Mazza A, Gehr R, Masson L, Frigon D (2014) Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli in wastewater effluents. Appl Environ Microbiol 80(12):3656-3666. http://doi.org/10.1128/Aem.00418-14
  4. Borges AA, Jimenez-Arias D, Exposito-Rodriguez M, Sandalio LM, Perez JA (2014) Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front Plant Sci 5:642. http://doi.org/10.3389/fpls.2014.00642
  5. Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature 464(7287):418-422. http://doi.org/10.1038/nature08794
  6. Cai MQ, Sun PZ, Zhang LQ, Huang CH (2017) UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation. Environ Sci Technol 51(24):14217-14224. http://doi.org/10.1021/acs.est.7b04694
  7. Caretti C, Lubello C (2003) Wastewater disinfection with PAA and UV combined treatment: a pilot plant study. Water Res 37(10):2365-2371. http://doi.org/10.1016/S0043-1354(03)00025-3
  8. Carrasco G, Moggia C, Osses IJ, Alvaro JE, Urrestarazu M (2011) Use of peroxyacetic acid as green chemical on yield and sensorial quality in watercress (Nasturtium officinale R. Br.) under soilless culture. Int J Mol Sci 12(12):9463-9470. http://doi.org/10.3390/ijms12129463
  9. Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779-795. http://doi.org/10.1007/s000180050041
  10. Daudi A, O'Brien JA (2012) Detection of hydrogen peroxide by DAB Staining in Arabidopsis leaves. Bio Protoc 2(18):e263. http://doi.org/10.21769/BioProtoc.263
  11. de Souza JB, Valdez FQ, Jeranoski RF, Vidal CMD, Cavallini GS (2015) Water and wastewater disinfection with peracetic acid and UV radiation and using advanced oxidative process PAA/UV. Int J Photoenergy 2015:1-7. http://doi.org/10.1155/2015/860845
  12. Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV (2020) Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int J Mol Sci 21(9):3237. http://doi.org/10.3390/ijms21093237
  13. Dominguez-Henao L, Turolla A, Monticelli D, Antonelli M (2018) Assessment of a colorimetric method for the measurement of low concentrations of peracetic acid and hydrogen peroxide in water. Talanta 183:209-215. http://doi.org/10.1016/j.talanta.2018.02.078
  14. Fukao T, Bailey-Serres J (2004) Plant responses to hypoxia--is survival a balancing act? Trends Plant Sci 9(9):449-456. http://doi.org/10.1016/j.tplants.2004.07.005
  15. Gehr R, Wagner M, Veerasubramanian P, Payment P (2003) Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Res 37(19):4573-4586. http://doi.org/10.1016/S0043-1354(03)00394-4
  16. Hasanuzzaman M, Bhuyan M, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M (2020) Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. Int J Mol Sci 21(22):8695. http://doi.org/10.3390/ijms21228695
  17. Hassaballah AH, Nyitrai J, Hart CH, Dai N, Sassoubre LM (2019) A pilot-scale study of peracetic acid and ultraviolet light for wastewater disinfection. Environ Sci : Water Res Technol 5(8):1453-1463. http://doi.org/10.1039/c9ew00341j
  18. Hong JK, Jang SJ, Lee YH, Jo YS, Yun JG, Jo H, Park CJ, Kim HJ (2018) Reduced bacterial wilt in tomato plants by bactericidal peroxyacetic acid mixture treatment. Plant Pathol J 34(1):78-84. http://doi.org/10.5423/PPJ.NT.06.2017.0131
  19. Hossain MA, Bhattacharjee S, Armin SM, Qian PP, Xin W, Li HY, Burritt DJ, Fujita M, Tran LSP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420. http://doi.org/10.3389/Fpls.2015.00420
  20. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323-329. http://doi.org/10.1038/nature05286
  21. Kibbee R, Ormeci B (2020) Peracetic acid (PAA) and low-pressure ultraviolet (LP-UV) inactivation of Coxsackievirus B3 (CVB3) in municipal wastewater individually and concurrently. Water Res 183(15):116048. http://doi.org/10.1016/J.Watres.2020.116048
  22. Liao WB, Huang GB, Yu JH, Zhang ML (2012) Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol Biochem 58:6-15. http://doi.org/10.1016/j.plaphy.2012.06.012
  23. Liao WB, Xiao HL, Zhang ML (2009) Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold. Acta Physiol Plant 31(6):1279-1289. http://doi.org/10.1007/s11738-009-0367-3
  24. Liu J, Macarisin D, Wisniewski M, Sui Y, Droby S, Norelli J, Hershkovitz V (2013) Production of hydrogen peroxide and expression of ROS-generating genes in peach flower petals in response to host and non-host fungal pathogens. Plant Pathol 62(4):820-828. http://doi.org/10.1111/j.1365-3059.2012.02683.x
  25. Ma F, Wang LJ, Li JL, Samma MK, Xie YJ, Wang R, Wang J, Zhang J, Shen WB (2014) Interaction between HY1 and H2O2 in auxin-induced lateral root formation in Arabidopsis. Plant Mol Biol 85(1-2):49-61. http://doi.org/10.1007/s11103-013-0168-3
  26. Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive Part of induced resistance. Annu Rev Plant Biol 68:485-512. http://doi.org/10.1146/annurev-arplant-042916-041132
  27. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490-498. http://doi.org/10.1016/j.tplants.2004.08.009
  28. Ngou BPM, Ding PT, Jones JDG (2022) Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34(5):1447-1478. http://doi.org/10.1093/plcell/koac041
  29. Petrov VD,Van Breusegem F (2012) Hydrogen peroxide-a central hub for information flow in plant cells. Aob Plants 2012:pls014. http://doi.org/10.1093/aobpla/pls014
  30. Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50(1):2-18. http://doi.org/10.1111/j.1744-7909.2007.00599.x
  31. Singh P, Yekondi S, Chen PW, Tsai CH, Yu CW, Wu K, Zimmerli L (2014) Environmental history modulates Arabidopsis patterntriggered immunity in a HISTONE ACETYLTRANSFERASE1-dependent manner. Plant Cell 26(6):2676-2688. http://doi.org/10.1105/tpc.114.123356
  32. Sun PZ, Zhang TQ, Mejia-Tickner B, Zhang RC, Cai MQ, Huang CH (2018) Rapid disinfection by peracetic acid combined with UV irradiation. Environ Sci Technol Lett 5(6):400-404. http://doi.org/10.1021/acs.estlett.8b00249
  33. Tanou G, Fotopoulos V, Molassiotis A (2012) Priming against environmental challenges and proteomics in plants: Update and agricultural perspectives. Front Plant Sci 3:216. http://doi.org/10.3389/fpls.2012.00216
  34. van Delden SH, Nazarideljou MJ, Marcelis LFM (2020) Nutrient solutions for Arabidopsis thaliana: a study on nutrient solution composition in hydroponics systems. Plant Methods 16:72. http://doi.org/10.1186/s13007-020-00606-4
  35. Vines JRL, Jenkins PD, Foyer CH, French MS, Scott IM (2003) Physiological effects of peracetic acid on hydroponic tomato plants. Ann Appl Biol 143(2):153-159. http://doi.org/10.1111/j.1744-7348.2003.tb00281.x
  36. Weng S, Dunkin N, Schwab KJ, McQuarrie J, Bell K, Jacangelo JG (2018) Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent. J Environ Manage 221:1-9. http://doi.org/10.1016/j.jenvman.2018.04.064
  37. Xiao FM, He P, Abramovitch RB, Dawson JE, Nicholson LK, Sheen J, Martin GB (2007) The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants. Plant J 52(4):595-614. http://doi.org/10.1111/j.1365-313X.2007.03259.x
  38. Zhang TQ, Huang CH (2020) Simultaneous quantification of peracetic acid and hydrogen peroxide in different water matrices using HPLC-UV. Chemosphere 257:127229. http://doi.org/10.1016/j.chemosphere.2020.127229
  39. Zhang TQ, Luo YG, Zhou B, Teng Z, Huang CH (2022) Sequential Application of Peracetic Acid and UV Irradiation (PAAUV/PAA) for Improved Bacterial Inactivation in Fresh-Cut Produce Wash Water. ACS ES&T Water 2(7):1247-1253. http://doi.org/10.1021/acsestwater.2c00087
  40. Zhang TQ, Wang T, Mejia-Tickner B, Kissel J, Xie X, Huang CH (2020) Inactivation of bacteria by peracetic acid combined with ultraviolet irradiation: mechanism and optimization. Environ Sci Technol 54(15):9652-9661. http://doi.org/10.1021/acs.est.0c02424