DOI QR코드

DOI QR Code

Comparative antiplasmodial activity, cytotoxicity, and phytochemical contents of Warburgia ugandensis stem bark against Aspilia africana wild and in vitro regenerated tissues

  • Denis Okello (Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine) ;
  • Jeremiah Gathirwa (Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute) ;
  • Alice Wanyoko (Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute) ;
  • Richard Komakech (Natural Chemotherapeutics Research Institute, Ministry of Health) ;
  • Yuseong Chung (Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine) ;
  • Roggers Gang (Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine) ;
  • Francis Omujal (Natural Chemotherapeutics Research Institute, Ministry of Health) ;
  • Youngmin Kang (Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine)
  • Received : 2023.05.03
  • Accepted : 2023.05.19
  • Published : 2023.06.01

Abstract

Malaria remains to be one of the most severe global public health concerns. Traditionally, Aspilia Africana and Warburgia ugandensis have been used to treat malaria in several African countries for millennia. In the current study, A. africana calli (AaC), A. africana in vitro roots (AaIR), A. africana wild leaf (AaWL), and W. ugandensis stem bark (WuSB) were dried and pulverized. Fourier transform near-infrared spectroscopy was used to analyze the powdered samples, while 80% ethanolic extracts of each sample were assayed for antiplasmodial activity (against Plasmodium falciparum strains DD2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive)) and cytotoxicity. WuSB showed the highest antiplasmodial activity (IC50 = 1.57 ± 0.210 ㎍/ml and 8.92 ± 0.365 ㎍/ml against P. falciparum 3D7 and DD2, respectively) and selectivity indices (43.90 ± 7.914 and 7.543 ± 0.051 for P. falciparum 3D7 and DD2, respectively). The highest total polyphenolic contents (total phenolic and flavonoid contents of 367.9 ± 3.55 mg GAE/g and 203.9 ± 1.43 mg RUE/g, respectively) were recorded for WuSB and the lowest were recorded for AaC. The antiplasmodial activities of the tested plant tissues correlated positively with total polyphenolic content. The high selectivity indices of WuSB justify its traditional applications in treating malaria and present it as a good candidate for discovering new antimalarial compounds. We recommend elicitation treatment for AaIR, which showed moderate antiplasmodial activity against P. falciparum DD2, to increase its secondary metabolite production for optimal antimalarial activity.

Keywords

Acknowledgement

This work was supported by Grants from the Development of Sustainable Application for Standard Herbal Resources (KSN1822320) and under the framework of international cooperation program (Korea-South Africa Cooperative Research Project for Excavation of Candidate Resources of Complementary and Alternative Medicine) managed by National Research Foundation of Korea (Grant: 2017 093655, KIOM: D17470). Additionally, the research was supported by the University of Science and Technology, Republic of Korea under the Overseas' training program.

References

  1. Afagnigni AD, Nyegue MA, Djova SV, Etoa FX (2020) LC-MS analysis, 15-lipoxygenase inhibition, cytotoxicity, and genotoxicity of dissotis multiflora (Sm) triana (melastomataceae) and Paullinia pinnata Linn (Sapindaceae). J Trop Med 2020
  2. Ahuchaogu AA, Ogbuehi GI, Obike AI, Egedeuzu CS, Chukwu OJ, Echeme JB (2018) GC-MS analysis of bioactive compounds from whole plant chloroform extract of Ageratum conyzoides. IJMPNP 4:13-24
  3. Andrade-Neto VF, Brandao MG, Oliveira FQ, Casali VW, Njaine B, Zalis MG, Oliveira LA, Krettli AU (2004) Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil. Phytother Res 18(8):634-9
  4. Bantie L, Assefa S, Teklehaimanot T, Engidawork E (2014) In vivo antimalarial activity of the crude leaf extract and solvent fractions of Croton macrostachyus Hocsht.(Euphorbiaceae) against Plasmodium berghei in mice. BMC Complement Altern Med 14:79
  5. Barber BE, Grigg MJ, William T, Yeo TW, Anstey NM (2017) The treatment of Plasmodium knowlesi malaria. Trends Parasitol 33(3):242-53 https://doi.org/10.1016/j.pt.2016.09.002
  6. Bero J, Ganfon H, Jonville MC, Frederich M, Gbaguidi F, DeMol P, Moudachirou M, Quetin-Leclercq J (2009) In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. J Ethnopharmacol 122(3):439-44 https://doi.org/10.1016/j.jep.2009.02.004
  7. Bucchini A, Giamperi L, Ricci D (2013) Total polyphenol content, in vitro antifungal and antioxidant activities of callus cultures from Inula crithmoides. Nat Prod Commun 8(11): 1934578X1300801122
  8. Carbas B, Machado N, Oppolzer D, Queiroz M, Brites C, Rosa EA, Barros AI (2020) Prediction of phytochemical composition, in vitro antioxidant activity and individual phenolic compounds of common beans using MIR and NIR spectroscopy. Food Bioproc Tech 13:962-977 https://doi.org/10.1007/s11947-020-02457-2
  9. Chono A, Onegi B, Anyama N, Jenett-Siems K, Malele R (2009) Clinical and parasitological effects of Aspilia africana (Pers.) CD Adams in fifteen patients with uncomplicated malaria. East and Central African Journal of Pharmaceutical Sciences 12(2)
  10. Christian AG, Mfon AG, Dick EA, David-Oku E, Linus AJ, Chukwuma EB (2012) Antimalarial potency of the leaf extract of Aspilia africana (Pers.) CD Adams. Asian Pac J Trop Med 5:126-129 https://doi.org/10.1016/S1995-7645(12)60010-8
  11. Cimanga R, Tona L, Luyindula N, Mesia K, Lusakibanza M, Musuamba C, Apers S, De Bruyne T, Van Miert S, Hermans N (2004) In vitro antiplasmodial activity of callus culture extracts and fractions from fresh apical stems of Phyllanthus niruri L.(Euphorbiaceae): part 2. J Ethnopharmacol 95: 399-404 https://doi.org/10.1016/j.jep.2004.08.014
  12. Cudjoe E, Donu D, Okonu RE, Amponsah JA, Amoah L (2020) The in vitro antiplasmodial activities of aqueous extracts of selected Ghanaian herbal plants. J Parasitol Res 2020
  13. Derakhshan Z, Ferrante M, Tadi M, Ansari F, Heydari A, Hosseini MS, Conti GO, Sadrabad EK (2018) Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. FTC 114:108-111 https://doi.org/10.1016/j.fct.2018.02.023
  14. Dolabela MF, Oliveira SG, Nascimento JM, Peres JM, Wagner H, Povoa MM, De Oliveira AB (2008) In vitro antiplasmodial activity of extract and constituents from Esenbeckia febrifuga, a plant traditionally used to treat malaria in the Brazilian Amazon. Phytomedicine 15:367-372 https://doi.org/10.1016/j.phymed.2008.02.001
  15. Faraz R, Gokhale M, Gothalwal R (2020) Callus extracts of Oroxylum indicum (L.) vent containing baicalein have in vitro antioxidant and antibacterial activities. Biotecnologia Vegetal 20:51-62
  16. Gang R, Kang Y (2022) Botanical features and ethnopharmacological potential of Leonotis nepetifolia (L.) R. Br: a review. J Plant Biotechnol 49:3-14 https://doi.org/10.5010/JPB.2022.49.1.003
  17. Grabkowska R, Matkowski A, Grzegorczyk-Karolak I, Wysokinska H (2016) Callus cultures of Harpagophytum procumbens (Burch.) DC. ex Meisn.; production of secondary metabolites and antioxidant activity. S Afr J Bot 103:41-48 https://doi.org/10.1016/j.sajb.2015.08.012
  18. Grace MH, Yousef GG, Gustafson SJ, Truong V-D, Yencho GC, Lila M (2014) Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweetpotato storage and impacts on bioactive properties. Food Chem 145:717-724 https://doi.org/10.1016/j.foodchem.2013.08.107
  19. Ichino C, Soonthornchareonnon N, Chuakul W, Kiyohara H, Ishiyama A, Sekiguchi H, Namatame M, Otoguro K, Omura S, Yamada H (2006) Screening of Thai medicinal plant extracts and their active constituents for in vitro antimalarial activity. Phytother Res 20:307-309 https://doi.org/10.1002/ptr.1850
  20. Inbaneson SJ, Sundaram R, Suganthi P (2012) In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum. Asian Pac J Trop Med 5:103-106 https://doi.org/10.1016/S1995-7645(12)60004-2
  21. Irungu BN, Rukunga GM, Mungai GM, Muthaura CN (2007) In vitro antiplasmodial and cytotoxicity activities of 14 medicinal plants from Kenya. S Afr J Bot 73:204-207 https://doi.org/10.1016/j.sajb.2006.11.004
  22. Karama I, Compaore M, Djande A, Traore O, Lagnika L, Kiendrebeogo M (2020) Antiplasmodial activities of flavonoids from leaves of Securidaca longepedunculata Fresen (Polygalaceae). AJBIO 8:1-5
  23. Katuura E, Waako P, Ogwal-Okeng J, Bukenya-Ziraba R (2007) Traditional treatment of malaria in Mbarara District, western Uganda. Afr J Ecol 45:48-51 https://doi.org/10.1111/j.1365-2028.2007.00737.x
  24. Makler M, Ries J, Williams J, Bancroft J, Piper R, Gibbins B, Hinrichs D (1993) Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg 48:739-741 https://doi.org/10.4269/ajtmh.1993.48.739
  25. Mallik J, Akhter R (2012) Phytochemical screening and in-vitro evaluation of reducing power, cytotoxicity and anti-fungal activities of ethanol extracts of Cucumis sativus. Int J Pharm Biol Arch 3:555-560
  26. Martinez-Correa HA, Paula JT, Kayano ACA, Queiroga CL, Magalhaes PM, Costa FT, Cabral F (2017) Composition and antimalarial activity of extracts of Curcuma longa L. obtained by a combination of extraction processes using supercritical CO2, ethanol and water as solvents. J Supercrit Fluids 119: 122-129
  27. Mediani A, Abas F, Tan CP, Khatib A (2014) Effects of different drying methods and storage time on free radical scavenging activity and total phenolic content of Cosmos caudatus. Antioxidants 3:358-370 https://doi.org/10.3390/antiox3020358
  28. Monroe A, Williams NA, Ogoma S, Karema C, Okumu F (2022) Reflections on the 2021 World Malaria Report and the future of malaria control. Malar J 21(154):1-6 https://doi.org/10.1186/s12936-022-04178-7
  29. Muller PY, Milton MN (2012) The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov 11:751-761 https://doi.org/10.1038/nrd3801
  30. Mwitari PG, Ayeka PA, Ondicho J, Matu EN, Bii CC (2013) Antimicrobial activity and probable mechanisms of action of medicinal plants of Kenya: Withania somnifera, Warbugia ugandensis, Prunus africana and Plectrunthus barbatus. PloS one 8:e65619
  31. Njeru SN, Muema JMJBRN (2021) In vitro cytotoxicity of Aspilia pluriseta Schweinf. extract fractions. BMC Research Notes 14:1-4
  32. Njeru SN, Obonyo MA, Nyambati SO, Ngari SMJBC, Medicine A (2015) Antimicrobial and cytotoxicity properties of the crude extracts and fractions of Premna resinosa (Hochst.) Schauer (Compositae): Kenyan traditional medicinal plant. BMC Complement Altern Med 15:1-9 https://doi.org/10.1186/s12906-015-0811-4
  33. Ntie-Kang F, Onguene PA, Lifongo LL, Ndom JC, Sippl W, Mbaze LM (2014) The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malar J 13:1-20 https://doi.org/10.1186/1475-2875-13-81
  34. Okello D, Kang Y (2019) Exploring antimalarial herbal plants across communities in Uganda based on electronic data. eCAM 2019
  35. Okello D, Kang Y (2021) Ethnopharmacological potentials of Warburgia ugandensis on antimicrobial activities. Chin J Integr Med 27:633-640 https://doi.org/10.1007/s11655-019-3042-6
  36. Okello D, Chung Y, Kim H, Lee J, Rahmat E, Komakech R, Kim Y-G, Omujal F, Kang Y (2021) Antioxidant activity, polyphenolic content, and FT-NIR analysis of different Aspilia africana medicinal plant tissues. eCAM 2021
  37. Okello D, Komakech R, Matsabisa MG, Kang YJ (2018) A review on the botanical aspects, phytochemical contents and pharmacological activities of Warburgia ugandensis. J Med Plant Res 12:448-455
  38. Oliveira F, Andrade-Neto V, Krettli A, Brandao M (2004) New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J Ethnopharmacol 93:39-42 https://doi.org/10.1016/j.jep.2004.03.026
  39. Pandey V, Agrawal V (2009) Efficient micropropagation protocol of Spilanthes acmella L. possessing strong antimalarial activity. In Vitro Cell Dev Biol 45:491-499 https://doi.org/10.1007/s11627-008-9184-4
  40. Pascoa RN, Teixeira AM, Sousa CJ (2019) Antioxidant capacity of Camellia japonica cultivars assessed by near-and mid-infrared spectroscopy. Planta 249:1053-1062 https://doi.org/10.1007/s00425-018-3062-z
  41. Putri NS, Noli Z (2021) Callus culture as the method in providing antimalarial compounds of Piper genus. J Environ Sci Sustain Soc 10(3):03-11
  42. Rajendran R, Narashimman BS, Trivedi V, Chaturvedi RJ (2017) Isolation and quantification of antimalarial N-alkylamides from flower-head derived in vitro callus cultures of Spilanthes paniculata. J Biosci Bioeng 124:99-107 https://doi.org/10.1016/j.jbiosc.2017.02.001
  43. Rasool A, Bhat KM, Sheikh AA, Jan A, Hassan SJ (2020) Medicinal plants: Role, distribution and future. J pharmacogn phytochem 9:2111-2114
  44. Schultz F, Osuji OF, Nguyen A, Anywar G, Scheel JR, Caljon G, Pieters L, Garbe L (2021) Pharmacological assessment of the antiprotozoal activity, cytotoxicity and genotoxicity of medicinal plants used in the treatment of Malaria in the greater Mpigi Region in Uganda. Front Pharmacol 12:678535
  45. Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P, Mundia CW, Bejon P, Noor A (2017) The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature 550: 515-518 https://doi.org/10.1038/nature24059
  46. Srivastava A, Srivastava P, Pandey A, Khanna V, Pant A (2019) A potential alternative medicine in controlling neurological disorders. InNew look to phytomedicine. Academic Press. pp. 625-655.
  47. Taha A, Alsayed H (2000) Brine shrimp bioassay of ethanol extracts of Sesuvium verrucosum, Salsola baryosma and Zygophyllum quatarense medicinal plants from Bahrain. Phytother Res 14:48-50 https://doi.org/10.1002/(SICI)1099-1573(200002)14:1<48::AID-PTR536>3.0.CO;2-Z
  48. Touret F, Gil l es M, Barral K, Nougairede A, Van Hel den J, Decroly E, De Lamballerie (2020) In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep 10:13093
  49. Valenzuela-Atondo DA, Delgado-Vargas F, Lopez-Angulo G, Calderon-Vazquez CL, Orozco-Cardenas ML, Cruz-Mendivil AJ (2020) Antioxidant activity of in vitro plantlets and callus cultures of Randia echinocarpa, a medicinal plant from northwestern Mexico. In Vitro Cell Dev Biol 56:440-446 https://doi.org/10.1007/s11627-020-10062-3
  50. Vats S, Tiwari R, Alam A, Behera KK, Pareek R (2012) Evaluation of phytochemicals, antioxidant and antimicrobial activity of in vitro culture of Vigna unguiculata (L.) walp. Researcher 4:70-74
  51. Waako P J, Smith P, Folb P (2005) In vitro interactions of Aspilia africana (Pers.) CD Adams, a traditional antimalarial medicinal plant, with artemisinin against Plasmodium falciparum. Afr J Ecol 102:262-268
  52. Waako P, Katuura E, Smith P, Folb P (2007) East African medicinal plants as a source of lead compounds for the development of new antimalarial drugs. J Ethnopharmacol 45:102-106 https://doi.org/10.1111/j.1365-2028.2007.00752.x
  53. Wahyuni DK, Rahayu S, Zaidan AH, Ekasari W, Prasongsuk S, Purnobasuki H (2021) Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg (CO3) 2] treatment. Plos one16:e0254804
  54. Were P, Kinyanjui P, Gicheru M, Mwangi E, Ozwara H (2010) Prophylactic and curative activities of extracts from Warburgia ugandensis Sprague (Canellaceae) and Zanthoxylum usambarense (Engl.) Kokwaro (Rutaceae) against Plasmodium knowlesi and Plasmodium berghei. J Ethnopharmacol 130:158-162 https://doi.org/10.1016/j.jep.2010.04.034
  55. Were PS, Kutima HL, Suba HO, Walyambillah WJ (2020) Warburgia ugandensis: A potent in vivo phytomedicine against Plasmodium knowlesi. J Pharmacogn Phytochem 9:01-05
  56. Wiedemair V, Ramoner R, Huck C (2019) Investigations into the total antioxidant capacities of cultivars of gluten-free grains using near-infrared spectroscopy. Food Control 95:189-195 https://doi.org/10.1016/j.foodcont.2018.07.045
  57. WHO (World Health Organization) (2018) WHO expert consultation on rabies: third report. World Health Organization; 2018 Aug 31
  58. WHO (World Health Organization) (2022) World malaria report 2022. World Health Organization; 2022 Dec 8
  59. Zhang Z, Hamada H (2019) Selectivity of dietary phenolics for inhibition of human monoamine oxidases A and B. Biomed Res Int 2019