DOI QR코드

DOI QR Code

ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF A TOPOLOGICAL LE-MODULE

  • Anjan Kumar Bhuniya (Department of Mathematics Visva-Bharati) ;
  • Manas Kumbhakar (Department of Mathematics Nistarini College)
  • 투고 : 2021.02.14
  • 심사 : 2022.06.15
  • 발행 : 2023.01.31

초록

An le-module M over a commutative ring R is a complete lattice ordered additive monoid (M, ⩽, +) having the greatest element e together with a module like action of R. This article characterizes the le-modules RM such that the pseudo-prime spectrum XM endowed with the Zariski topology is a Noetherian topological space. If the ring R is Noetherian and the pseudo-prime radical of every submodule elements of RM coincides with its Zariski radical, then XM is a Noetherian topological space. Also we prove that if R is Noetherian and for every submodule element n of M there is an ideal I of R such that V (n) = V (Ie), then the topological space XM is spectral.

키워드

참고문헌

  1. J. Abuhlail, A dual Zariski topology for modules, Topology Appl. 158 (2011), no. 3, 457-467. https://doi.org/10.1016/j.topol.2010.11.021
  2. D. D. Anderson, Multiplicative lattices, Dissertation, University of Chicago, 1974.
  3. D. D. Anderson, Abstract commutative ideal theory without chain condition, Algebra Universalis 6 (1976), no. 2, 131-145. https://doi.org/10.1007/BF02485825
  4. D. D. Anderson and E. W. Johnson, Abstract ideal theory from Krull to the present, in Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 27-47, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
  5. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Reading, Mass, Addison-Wesley, 1969.
  6. M. Behboodi, A generalization of the classical Krull dimension for modules, J. Algebra 305 (2006), no. 2, 1128-1148. https://doi.org/10.1016/j.jalgebra.2006.04.010
  7. M. Behboodi and M. R. Haddadi, Classical Zariski topology of modules and spectral spaces. I, Int. Electron. J. Algebra 4 (2008), 104-130.
  8. A. K. Bhuniya and M. Kumbhakar, Uniqueness of primary decompositions in Laskerian le-modules, Acta Math. Hungar. 158 (2019), no. 1, 202-215. https://doi.org/10.1007/s10474-019-00928-3
  9. N. Bourbaki, General Topology, Part I, Addison-Wesley, 1966.
  10. N. Bourbaki, Commutative Algebra, Springer-Verlag, 1998.
  11. R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481-498. http://projecteuclid.org/euclid.pjm/1103036487 103036487
  12. T. Duraivel, Topology on spectrum of modules, J. Ramanujan Math. Soc. 9 (1994), no. 1, 25-34.
  13. D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, Prime submodules and a sheaf on the prime spectra of modules, Comm. Algebra 42 (2014), no. 7, 3063-3077. https://doi.org/10.1080/00927872.2013.780063
  14. D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, Pseudo-prime submodules of modules, Math. Rep. (Bucur.) 18(68) (2016), no. 4, 591-608.
  15. D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, Topological dimension of pseudo-prime spectrum of modules, Commun. Korean Math. Soc. 32 (2017), no. 3, 553-563. https://doi.org/10.4134/CKMS.c160230
  16. M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60. https://doi.org/10.2307/1995344
  17. J. A. Johnson, a-adic completions of Noetherian lattice modules, Fund. Math. 66 (1969/70), 347-373. https://doi.org/10.4064/fm-66-3-347-373
  18. J. A. Johnson, Noetherian lattice modules and semi-local completions, Fund. Math. 73 (1971/72), no. 2, 93-103. https://doi.org/10.4064/fm-73-2-93-103
  19. E. W. Johnson and J. A. Johnson, Lattice modules over semi-local Noether lattices, Fund. Math. 68 (1970), 187-201. https://doi.org/10.4064/fm-68-2-187-201
  20. M. Kumbhakar and A. K. Bhuniya, Pseudo-prime submodule elements of an le-module, https://www.researchgate.net/publication/329339509
  21. M. Kumbhakar and A. K. Bhuniya, On irreducible pseudo-prime spectrum of topological le-modules, Quasigroups Related Systems 26 (2018), no. 2, 251-262.
  22. M. Kumbhakar and A. K. Bhuniya, On the prime spectrum of an le-module, J. Algebra Appl. 20 (2021), no. 12, Paper No. 2150220, 18 pp. https://doi.org/10.1142/ S0219498821502200
  23. C.-P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), no. 3, 417-432.
  24. C.-P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math. 33 (2007), no. 1, 125-143.
  25. C.-P. Lu, Modules with Noetherian spectrum, Comm. Algebra 38 (2010), no. 3, 807-828. https://doi.org/10.1080/00927870802578050
  26. R. L. McCasland, M. E. Moore, and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), no. 1, 79-103. https://doi.org/10.1080/00927879708825840
  27. M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939), no. 3, 335-354. https://doi.org/10.2307/1990008
  28. M. Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600-608. https://doi.org/10.2307/1968944
  29. D. G. Whitman, On ring theoretic lattice modules, Fund. Math. 70 (1971), no. 3, 221-229. https://doi.org/10.4064/fm-70-3-221-229