Acknowledgement
The second author wants to thank the members of the Facultad de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla for their hospitality during the development of this research.
References
- J. A. Beachy, M-injective modules and prime M-ideals, Comm. Algebra 30 (2002), no. 10, 4649-4676. https://doi.org/10.1081/AGB-120014660
- J. A. Beachy and M. Medina-Barcenas, Fully prime modules and fully semiprime modules, Bull. Korean Math. Soc. 57 (2020), no. 5, 1177-1193. https://doi.org/10.4134/BKMS.b190864
- J. A. Beachy and M. Medina-Barcenas, Reduced rank in σ[M], preprint, ArXiv:2201. 07196, 2022.
- L. Bican, P. Jambor, T. Kepka, and P. Nemec, Prime and coprime modules, Fund. Math. 107 (1980), no. 1, 33-45. https://doi.org/10.4064/fm-107-1-33-45
- A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq. 14 (2007), no. 3, 489-496. https://doi.org/10.1142/S1005386707000442
- I. N. Herstein and L. Small, Nil rings satisfying certain chain conditions, Canadian J. Math. 16 (1964), 771-776. https://doi.org/10.4153/CJM-1964-074-0
- T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4684-0406-7
- C. Lanski, Nil subrings of Goldie rings are nilpotent, Canadian J. Math. 21 (1969), 904-907. https://doi.org/10.4153/CJM-1969-098-x
- M. Medina-Barcenas and A. Ozcan, Primitive submodules, co-semisimple and regular modules, Taiwanese J. Math. 22 (2018), no. 3, 545-565. https://doi.org/10.11650/tjm/171102
- M. G. Medina-Barcenas, L. A. Zaldivar-Corichi, and M. L. S. Sandoval-Miranda, A generalization of quantales with applications to modules and rings, J. Pure Appl. Algebra 220 (2016), no. 5, 1837-1857. https://doi.org/10.1016/j.jpaa.2015.10.004
- J. C. Perez, M. Medina Barcenas, and J. Rios Montes, Modules with ascending chain condition on annihilators and Goldie modules, Comm. Algebra 45 (2017), no. 6, 2334-2349. https://doi.org/10.1080/00927872.2016.1233200
- J. C. Perez, M. Medina Barcenas, J. Rios Montes, and A. Zaldivar Corichi, On semiprime Goldie modules, Comm. Algebra 44 (2016), no. 11, 4749-4768. https://doi.org/10.1080/00927872.2015.1113290
- J. C. Perez and J. Rios Montes, Prime submodules and local Gabriel correspondence in σ[M], Comm. Algebra 40 (2012), no. 1, 213-232. https://doi.org/10.1080/00927872.2010.529095
- F. Raggi, J. Rios, H. Rincon, R. Fernandez-Alonso, and C. Signoret, Prime and irreducible preradicals, J. Algebra Appl. 4 (2005), no. 4, 451-466. https://doi.org/10.1142/S0219498805001290
- F. Raggi, J. Rios, H. Rincon, R. Fernandez-Alonso, and C. Signoret, Semiprime preradicals, Comm. Algebra 37 (2009), no. 8, 2811-2822. https://doi.org/10.1080/00927870802623476
- J. E. van den Berg and R. Wisbauer, Modules whose hereditary pretorsion classes are closed under products, J. Pure Appl. Algebra 209 (2007), no. 1, 215-221. https://doi.org/10.1016/j.jpaa.2006.05.030
- R. Wisbauer, Foundations of module and ring theory, revised and translated from the 1988 German edition, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.