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THE NILPOTENCY OF THE PRIME RADICAL OF

A GOLDIE MODULE

John A. Beachy and Mauricio Medina-Bárcenas

Abstract. With the notion of prime submodule defined by F. Raggi et

al. we prove that the intersection of all prime submodules of a Goldie
module M is a nilpotent submodule provided that M is retractable and

M(Λ)-projective for every index set Λ. This extends the well known fact
that in a left Goldie ring the prime radical is nilpotent.

1. Introduction

For a left Artinian ring R, it is known that the prime radical of R coincides
with its Jacobson radical. Therefore, in any left Artinian ring the prime radical
is always nilpotent. For an arbitrary ring R, it is no longer true that the
prime radical equals the Jacobson radical. In general, the prime radical of R
is contained properly in its Jacobson radical. It can be seen that the prime
radical of a ring R consists of nilpotent elements, that is, the prime radical is a
nil ideal. It has been a recurrent question in ring theory whether the nil (one-
sided) ideals are nilpotent. Levitzki, in 1939 (see [7, 10.30] and the paragraph
below the proof) proved that every nil one-sided ideal of a left Noetherian
ring is nilpotent. In particular, the prime radical of a left Noetherian ring is
nilpotent. This result was extended for a left Goldie ring by Lanski [8] in 1969.

In [4], a product of modules generalizing the product of a left ideal with a
left module was introduced. Hence, this product gives a product of submodules
of a given module and it coincides with the usual product of ideals when the
module is the base ring. In 2002, the first author proved that this product in
a left R-module M is associative provided that M is M (Λ)-projective for every
index set Λ [1, Proposition 5.6]. Later, in [14] (resp. [15]), it is introduced
the concept of prime (resp. semiprime) submodule of a module M using the
product mentioned above. As part of the second author’s dissertation, in [12]
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semiprime Goldie modules were presented as a generalization of semiprime left
Goldie rings. In this paper, for a left R-module M which is M (Λ)-projective for
every index set Λ, we consider the intersection of all prime submodules of M
and we prove that this intersection is nilpotent when M is Goldie, extending
Lanski’s result [8, Theorem 1]. The nilpotency of the prime radical of a Goldie
module will be used in a subsequent paper when the finite reduced rank is
studied in categories of type σ[M ] [3].

In order to achieve our goal, this paper is divided in five sections. The first
section is this introduction and the next one compiles the background needed
to make this work as self-contained as possible. In Section 3, nil-submodules
and locally nilpotent submodules are defined. It is proved that the sum of
all locally nilpotent submodules of a module inherits the property (Lemma
3.7). For a module M , this maximal locally nilpotent submodule is denoted
by L(M) and it happens that L (M/L(M)) = 0 provided that M is M (Λ)-
projective for every index set Λ (Proposition 3.8). Moreover, the submodule
L(M) coincides with the intersection of all prime submodules of M (Corollary
3.10). At the end of this section, using the operator L( ), a characterization of
semiprime rings in terms of free modules is given (Corollary 3.15). In Section 4,
we introduce the notion of ascending chain condition (acc) on annihilators on
a module M . We study the behavior of nil submodules of a module satisfying
acc on annihilators. We show that fully invariant nil submodules are locally
nilpotent when M is M (Λ)-projective for every index set Λ and satisfies acc
on annihilators (Proposition 4.4). Also in this section, a fundamental result of
the paper is proved (Proposition 4.12). Finally in Section 5, the main result is
proved. It is shown that a fully invariant nil submodule of a Goldie module M
is nilpotent, under the hypotheses that M is M (Λ)-projective for every index
set Λ and retractable (Theorem 5.4). As under the previous hypothesis on
M , when M is a Goldie module its endomorphism ring is a right Goldie ring
(Lemma 5.3), the proof of Theorem 5.4 is focused on finding elements in the
endomorphism ring of a Goldie module like those in [8, Lemma 8].

Throughout this paper R will denote an associative ring with unit and all the
R-modules will be unitary left modules. The notation N ≤M and N < M will
mean N is a submodule of M and N is a proper submodule of M , respectively.
Given an R-module M , the endomorphism ring of M usually will be denoted
by S = EndR(M). A direct sum of copies of a module M will be denoted by
M (Λ) where Λ is a set.

2. Preliminaries

Let M and N be left R-modules. It is said that M is N -projective if for
any epimorphism ρ : N → L and any homomorphism α : M → L, there
exists α : M → N such that ρα = α. It is true that if M is Ni-projective

for a finite family of modules {N1, . . . , N`}, then M is
⊕`

i=1Ni-projective [17,
18.2]. In general, this is not true for arbitrary families. A module M is called
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quasi-projective if M is M -projective. In most of the results in this paper, we
will assume that M is M (Λ)-projective for every index set Λ, this hypothesis
is satisfied by every finitely generated quasi-projective module for example
[17, 18.2]. The condition that M is M (Λ)-projective for every index set Λ is
equivalent to say that M is projective in the category σ[M ] [17, 18.3], where
σ[M ] is the category consisting of all M -subgenerated modules. In many of
our references, this last equivalence is used. It will also be used, inside the
proofs, that if M is M (Λ)-projective for every index set Λ and N is a fully
invariant submodule of M , then M/N is (M/N)(Λ)-projective for every index
set Λ [16, Lemma 9].

Given a left R-module M and N,K ≤M , the product of N with K in M is
defined as

NMK =
∑
{f(N) | f ∈ HomR(M,K)}.

If M is M (Λ)-projective for every index set Λ, this product gives an associative
operation in the lattice of submodules of M . Moreover, if N and K are fully
invariant submodules of M , then NMK is fully invariant. For N ≤ M , the
powers of N are defined recursively as follows: N1 = N and N `+1 = N `

MN . 1

It is said that a submodule N ≤M is nilpotent if N ` = 0 for some ` > 0. Some
general properties of this product are listed in [13, Proposition 1.3]. Also, we
give the following useful lemmas.

Lemma 2.1. Let M be a module and N ≤ M . Then KML ⊆ KNL for all
K,L ≤ N . In addition, if N ≤⊕ M , then KML = KNL.

Proof. Let K,L be submodules of N . Using the restriction of a homomorphism,
if f : M → L is any homomorphism, then f |N (K) = f(K) since K ≤ N . Thus
KML ⊆ KNL. Now suppose N is a direct summand of M . If f : N → L, then
f ⊕ 0 : M → L. Hence KNL ⊆ KML. Thus KNL = KML. �

Lemma 2.2. Let M be a quasi-projective module. If A and B are submodules
of M and f ∈ EndR(M), then f(AMB) = AMf(B) and f(A)MB ⊆ AMB.

Proof. Let f
(∑`

i=1 gi(ai)
)
∈ f(AMB). Then,

f

(∑̀
i=1

gi(ai)

)
=
∑̀
i=1

fgi(a) ∈ AMf(B).

On the other hand, let
∑`
i=1 hi(ai) ∈ AMf(B). The restriction f |B : B → f(B)

is an epimorphism. Since M is quasi-projective, there exists gi : M → B such
that fgi = hi for all i. Hence,∑̀

i=1

hi(ai) =
∑̀
i=1

fgi(ai) = f

(∑̀
i=1

gi(ai)

)
∈ f(AMB).

1Do not confuse the notation with the direct product of ` + 1 copies of N which will be

denoted by N(`+1).



188 J. BEACHY AND M. MEDINA-BÁRCENAS

For the other assertion, let
∑`
i=1 gi(f(ai)) ∈ f(A)MB. Then gif : M → B.

Thus,
∑`
i=1 gif(ai) ∈ AMB. �

Lemma 2.3. Let M be quasi-projective and let K,N ≤M be two submodules
with K fully invariant in M . If π : M → M/K is the canonical projection,
then π(NMN) = π(N)M/Kπ(N).

Proof. Since K is fully invariant in M , given f ∈ HomR(M,N) there is an
f̄ ∈ HomR(M/K, π(N)) such that πf = f̄π. Now, since M is quasi-projective,
if f̄ ∈ HomR(M/K, π(N)), then there exists f ∈ HomR(M,N) such that πf =
f̄π. Thus, there is an epimorphism HomR(M,N) → HomR(M/K, π(N)) → 0
induced by π. It follows that:

π(NMN) = π
(∑

{f(N) | f ∈ HomR(M,N)}
)

=
∑
{πf(N) | f ∈ HomR(M,N)}

=
∑
{f̄π(N) | f̄ ∈ HomR(M/K, π(N))}

= π(N)M/Kπ(N). �

In a natural way, a fully invariant submodule P of a module M is said to be a
prime submodule (resp. semiprime submodule) if NMK ≤ P (resp. NMN ≤ P )
implies N ≤ P or K ≤ P (resp. N ≤ P ) for every fully invariant submodules
N and K. It is said that M is a prime module (resp. semiprime module) if 0
is a prime (resp. semiprime) submodule. Many properties known for prime or
semiprime ideals can be extended to prime or semiprime submodules as it has
been done in [1, 2, 9, 13–15]. Recall that a ring R is left Goldie if R satisfies
the ascending chain condition (acc) on left annihilators and has finite uniform
dimension. This notion can be extended to left modules as follows: a left
module M is called Goldie if the set {

⋂
f∈X Ker f | X ⊆ EndR(M)} satisfies

acc and M has finite uniform dimension. It is clear that a ring R is a left
Goldie ring if and only if RR is a Goldie module [12].

3. Locally nilpotent submodules

Definition. Let M be an R-module and S = EndR(M). A submodule N of
M is called a nil-submodule if for all n ∈ N , the right ideal HomR(M,Rn) of
S is nil. That is, if each f : M → Rn is nilpotent.

Lemma 3.1. Let M be a quasi-projective module and let N be a nil-submodule
of M . Then, N+K

K is a nil-submodule of M/K for all K ≤M .

Proof. Let n+K ∈ N+K
K and f ∈ HomR(M/K,R(n+K)). Let π : M →M/K

be the canonical projection and consider π| : Rn→ R(n+K) the restriction to
Rn. Since M is quasi-projective, there exists g : M → Rn such that (π|)g = fπ.
By hypothesis, there exists k > 1 such that gk = 0. Therefore,

0 = (π|)gk = fπgk−1 = f(πg)gk−2 = f(fπ)gk−2 = · · · = fkπ.
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This implies that fk = 0 and hence N+K
K is a nil-submodule of M/K. �

Recall that a subset T of a ring R is called locally nilpotent if, for any finite
subset {t1, . . . , tn} ⊆ T there exists an integer ` such that any product of `
elements from {t1, . . . , tn} is zero [7, p. 166].

Definition. Let N be a submodule of a module M . It is said that N is locally
nilpotent if for any subset {n1, . . . , nk} ⊆ N there exists an integer ` > 0 such
that any combination of ` elements of {n1, . . . , nk} satisfies that

Rni1MRni2M · · ·MRni` = 0.

Note that if N is a locally nilpotent submodule of M , then Rn is a nilpotent
submodule for every n ∈ N , but N might not be nilpotent as the following
example shows.

Example 3.2. Consider the Z-module Q. Every nonzero cyclic submodule of

ZQ is isomorphic to Z and ZQZ = 0. This implies that ZQ is locally nilpotent.
But Q` = Q for all ` > 0.

Remark 3.3. It is clear that if a left ideal I of a ring R is a locally nilpotent
submodule, then I is a locally nilpotent subset. However, the converse might
not be true. For, consider the ring R given in [7, p. 167]. The ring R is prime,
so has no nonzero nilpotent submodules. But it is proved that R has a cyclic
left ideal Rx which is locally nilpotent. Therefore, Rx cannot be a locally
nilpotent submodule of RR.

Remark 3.4. If N ≤ M is locally nilpotent, then N is a nil-submodule. For,
let n ∈ N and f ∈ HomR(M,Rn). Consider {n} ⊆ N . Then, there is an ` > 0
such that (Rn)` = 0. Since f(n) ∈ RnMRn, f `−1(n) ∈ (Rn)` = 0. Thus,
f ` = 0. On the other hand, if N ≤ M is a nilpotent submodule, then N is
locally nilpotent.

Lemma 3.5. Suppose M is M (Λ)-projective for every index set Λ and let N
be a finitely generated submodule of M . If N is locally nilpotent, then N is
nilpotent.

Proof. We proceed by induction on the number of generators of N . Suppose
N = Rn. Since N is locally nilpotent, there exists ` > 0 such that the product
` times of Rn is zero, that is, N ` = (Rn)` = 0. Now suppose that N = Rn1 +
· · ·+Rnk and that the result is valid for any locally nilpotent finitely generated
submodule with less than k generators. Put K = Rn1 + · · · + Rnk−1. By
induction hypothesis there exist `1, `2 > 0 such that K`1 = 0 and (Rnk)`2 = 0.
Let ` > `1 + `2. Then,

(3.1)
N ` = (K +Rnk)`

= K` + · · ·+Kα1
M (Rnk)β1

M · · ·M Kαh
M (Rnk)βh + · · ·+ (Rnk)`,

where αi, βi ≥ 0,
∑h
i=1 αi + βi = ` and with the convention A0

MB = B and

AMB
0 = A. Then

∑h
i=1 αi > `1 or

∑h
i=1 βi > `2 since ` > `1+`2. Suppose β =
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i=1 βi>`2. Consider the summand X=Kα1

M (Rnk)β1
M · · ·M Kαh

M (Rnk)βh

in the expression (3.1). If βh 6= 0, then Kαh
M (Rnk)βh ⊆ (Rnk)βh . Hence

Kα1
M (Rnk)β1

M · · ·M Kαh
M (Rnk)βh

⊆ Kα1
M (Rnk)β1

M · · ·M Kαh−1
M (Rnk)βh−1+βh

· · ·

⊆ Kα1
M (Rnk)β .

Hence X = 0. If βh = 0, we have X = Kα1
M (Rnk)β1

M · · ·M (Rnk)βh−1
MK

αh .
Proceeding as above, X ⊆ Kα1

M (Rnk)βMK
αh . Thus, X = 0. Analogously if

α =
∑h
i=1 αi > `1. Hence N ` = 0. �

Remark 3.6. Notice that the proof of Lemma 3.5 implies that in a module
M which is M (Λ)-projective for every index set Λ, the finite sum of nilpotent
submodules is nilpotent.

Lemma 3.7. Suppose M is M (Λ)-projective for every index set Λ. If N and
L are locally nilpotent submodules of M , then N + L is locally nilpotent.

Proof. Let {n1 + l1, . . . , nk + lk} ⊆ N + L. For {n1, . . . , nk} ⊆ N there exists
`N > 0 such that any combination of `N elements of {n1, . . . , nk} satisfies that
Rni1MRni2M · · ·MRni`N = 0. Analogously, for the subset {l1, . . . , lk} ⊆ L,

there exists `L > 0 such that any combination of `L elements of {l1, . . . , lk}
satisfies that Rli1MRli2M · · ·MRli`L = 0. Take ` > `N + `L. Then

R(ni1 + li1)M · · ·MR(ni` + li`) ⊆ (Rni1 +Rli1)M · · ·M (Rni` +Rli`)

= · · ·+(Rni1)α1
M (Rli1)β1

M (Rni2)α2
M (Rli2)β2

M · · ·M (Rni`)
α`
M (Rli`)

β`+· · · ,
where αj , βj ∈ {0, 1} with the convention that (Rn)0

MRl = Rl and RnM (Rl)0

= Rn. Also, these exponents satisfy
∑`
j=1 αj + βj = `. Let us focus on the

summand

X = (Rni1)α1
M (Rli1)β1

M (Rni2)α2
M (Rli2)β2

M · · ·M (Rni`)
α`
M (Rli`)

β` .

Suppose that
∑`
j=1 αj ≥ `N . Since the product (Rnk−1)βk−1

M (Rlk)αk ⊆
(Rlk)αk ,

X ⊆
(

(Rni1)α1
M (Rni2)α2

M · · ·M (Rni`N )α`N

)
M

(Rli`N )β`N
M
· · ·M (Rni`)

α`
M (Rli`)

β` .

Then X = 0. Analogously, if
∑`
j=1 βj ≥ `L, then X = 0. Because of the choice

of ` it cannot be possible that
∑`
j=1 αj < `N and

∑`
j=1 βj < `L. Thus, N +L

is locally nilpotent. �

Proposition 3.8. Suppose M is M (Λ)-projective for every index set Λ and let
L(M) be the sum of all locally nilpotent submodules of M . Then L(M) is a
fully invariant locally nilpotent submodule. Moreover L(M/L(M)) = 0.
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Proof. It follows from Lemma 3.7 that L(M) is locally nilpotent. Let f ∈
EndR(M) be any endomorphism and let {f(m1), . . . , f(mk)} be any subset of
f(L(M)). Since L(M) is locally nilpotent and {m1, . . . ,mk} ⊆ L(M), there
exists ` > 0 such that any combination of ` elements of {m1, . . . ,mk} satisfies
that Rmi1MRmi2M · · ·MRmi` = 0. Then, by Lemma 2.2,

Rf(mi1)M
(
Rf(mi2)M · · ·MRf(mi`)MRf(mi`+1

)
)

⊆ Rmi1M

(
Rf(mi2)M · · ·MRf(mi`)MRf(mi`+1

)
)

⊆ Rmi1MRmi2M · · ·MRf(mi`)MRf(mi`+1
)

⊆ · · · ⊆ Rmi1MRmi2M · · ·MRmi`MRf(mi`+1
) = 0.

Therefore, f(L(M)) ⊆ L(M). Thus, L(M) is fully invariant. Now, let π : M →
M/L(M) be the canonical projection and x + L(M) ∈ M/L(M). Consider
R(x+L(M)) = π(Rx). It follows from Lemma 2.3, that L(M/L(M)) = 0. �

Corollary 3.9. Suppose M is M (Λ)-projective for every index set Λ. Then,
L(M) is a semiprime submodule of M .

Proof. Let K/L(M) be a submodule of M/L(M) such that (K/L(M))
2

= 0.
Hence K/L(M) is nilpotent and so K/L(M) ⊆ L(M/L(M)) = 0. Thus,
M/L(M) is a semiprime module which implies that L(M) is a semiprime sub-
module of M by [15, Proposition 13]. �

Definition. Let M be a module. The prime radical of M is defined as the
intersection of all prime submodules of M .

If M is M (Λ)-projective for every index set Λ, in [17, 22.3] it is shown that
Rad(M) 6= M , that is, M has maximal submodules. By [10, Corollary 4.11
and Example 4.14] each maximal submodule of M contains a prime submodule,
hence Spec(M) 6= ∅ and so the prime radical of M is a proper submodule.

Corollary 3.10. Suppose M is M (Λ)-projective for every index set Λ. Let N
be the prime radical of M . Then, N = L(M).

Proof. It follows from Corollary 3.9, that L(M) is a semiprime submodule.
Hence, N ⊆ L(M) by [12, Proposition 1.11]. Now, let l ∈ L(M). Since L(M)
is a locally nilpotent submodule, Rl is nilpotent. Since N is a semiprime
submodule, l ∈ N . Thus, L(M) ⊆ N . �

Corollary 3.11. Let M be a quasi-projective module. If M is Noetherian,
then the prime radical of M is nilpotent.

Proof. It follows from Lemma 3.5 and Corollary 3.10. �

Example 3.12. Let n, p be integers with p prime. Then, the Z-module Z/pnZ
is quasi-projective. It follows from Corollary 3.11 that L(Z/pnZ) = Z/pn−1Z
is a nilpotent submodule.
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Lemma 3.13. Suppose M is M (Λ)-projective for every index set Λ. If M =⊕
i∈IMi, then L(M) =

⊕
i∈I L(Mi).

Proof. It follows from Lemma 2.1 that L(Mi) ⊆ L(M) for all i ∈ I. Let
πj : M → Mj be the canonical projection. Since Mj ≤ M , we can see π
as an endomorphism of M . Hence π(L(M)) ⊆ Mj ∩ L(M) by Proposition
3.8. Now, let X ≤ M be a locally nilpotent submodule such that X ≤ Mj .
Since Mj is a direct summand of M , X ≤ L(Mj) by Lemma 2.1. Therefore
π(L(M)) ≤ L(Mj). Hence π(L(M)) ≤ L(Mi) for all i ∈ I. It follows that
L(M) ⊆

⊕
i∈I L(Mi). Thus, L(M) =

⊕
i∈I L(Mi). �

Proposition 3.14. Suppose M is M (Λ)-projective for every index set Λ and
that M =

⊕
i∈IMi. Then, M is semiprime if and only if Mi is a semiprime

module for all i ∈ I.

Proof. It follows from Lemma 3.13 that

L(M) = L

(⊕
i∈I

Mi

)
=
⊕
i∈I

L(Mi).

Thus, L(M) = 0 if and only if L(Mi) = 0 for all i ∈ I. �

Corollary 3.15. The following conditions are equivalent for a ring R.

(a) R is a semiprime ring.
(b) Every free left (right) R-module is semiprime.
(c) Every projective left (right) R-module is semiprime.

Corollary 3.16. The following conditions are equivalent for a ring R.

(a) The prime radical of R is nilpotent.
(b) The prime radical of every left (right) free R-module is nilpotent.
(c) The prime radical of every left (right) projective R-module is nilpotent.

Proof. (a)⇒(b) Consider a free R-module R(Λ). Then L
(
R(Λ)

)
= (L(R))

(Λ)
by

Lemma 3.13. By hypothesis, there exists n > 0 such that L(R)n = 0. Suppose
n = 2. Using Lemma 2.1 and the properties of the product we get

(L(R))
(Λ)

R(Λ) (L(R))
(Λ)

=
[
(L(R))

(Λ)
R(Λ)L(R)

](Λ)

=

[∑
Λ

(L(R)R(Λ)L(R))

](Λ)

=

[∑
Λ

(L(R)RL(R))

](Λ)

=

[∑
Λ

(
L(R)2

)](Λ)

= 0.

Thus, (
L
(
R(Λ)

))n
=

[∑
Λn−1

(L(R)n)

](Λ)

= 0.
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Therefore, the prime radical of R(Λ) is nilpotent.
(b)⇒(c) Let P be a projective R-module. Then there exists a free R-module

R(Λ) such that R(Λ) = P ⊕P ′. Hence L
(
R(Λ)

)
= L(P )⊕L(P ′). By hypothesis,

there exists n > 0 such that L
(
R(Λ)

)n
= 0. Therefore (L(P )⊕ L(P ′))

n
= 0.

Suppose n = 2. Then

0 = (L(P )⊕ L(P ′))
2

= [L(P )⊕ L(P ′)]R(Λ) [L(P )⊕ L(P ′)]

= ([L(P )⊕ L(P ′)]R(Λ) L(P ))⊕ ([L(P )⊕ L(P ′)]R(Λ) L(P ′)) .

On the other hand,

L(P )PL(P ) = L(P )R(Λ)L(P ) ⊆ [L(P )⊕ L(P ′)]R(Λ) L(P ) = 0.

This implies that L(P ) is a nilpotent submodule of P .
(c)⇒(a) is trivial. �

4. Nil-submodules and acc on annihilators

For a ring R and Y ⊆ R, the left (resp. right) annihilator of Y in R is

denoted by Ann`R(Y ) (resp. AnnrR(Y )). For a subset X ⊆ M of an R-module
M with S = EndR(M), the left annihilator of X in S is denoted by lS(X) =
{f ∈ S | f(X) = 0}. If 〈X〉 is the R-submodule generated by X ⊆ M , then
lS(X) = lS (〈X〉). On the other hand, an R-module M is said to have the acc
on annihilators if any chain⋂

f∈Y1

Ker f ⊆
⋂
f∈Y2

Ker f ⊆ · · ·

with Yi ⊆ EndR(M) (i > 0) becomes stationary in finitely many steps.

Proposition 4.1. If M satisfies acc on annihilators, then S = EndR(M)
satisfies acc on right annihilators.

Proof. We will show that S satisfies the descending chain condition (dcc) on
left annihilators. Let

Ann`S(X1) ⊇ Ann`S(X2) ⊇ · · ·
be a descending chain of left annihilators in S. Then, there is an ascending
chain ⋂

f∈Ann`
S(X1)

Ker f ⊆
⋂

f∈Ann`
S(X2)

Ker f ⊆ · · ·

in M . By hypothesis, there exists a positive integer k such that⋂
f∈Ann`

S(Xk)

Ker f =
⋂

f∈Ann`
S(Xk+i)

Ker f

for all i > 0. We claim that

lS

 ⋂
f∈Ann`

S(Xk)

Ker f

 = Ann`S(Xk).
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Let f ∈ Ann`S(Xk). It follows that f
(⋂

f∈Ann`
S(Xk) Ker f

)
= 0. Hence,

Ann`S(Xk) ⊆ lS

(⋂
f∈Ann`

S(Xk) Ker f
)

. Now, let g ∈ lS

(⋂
f∈Ann`

S(Xk) Ker f
)

and h ∈ Xk. It follows that fh = 0 for all f ∈ Ann`S(Xk), i.e., h(M) ⊆⋂
f∈Ann`

S(Xk) Ker f . Therefore, gh = 0. Thus, g ∈ Ann`S(Xk). Then,

Ann`S(Xk) = lS

 ⋂
f∈Ann`

S(Xk)

Ker f


= lS

 ⋂
f∈Ann`

S(Xk+i)

Ker f


= Ann`S(Xk+i)

for all i > 0. This implies that S satisfies acc on right annihilators. �

Notice that the converse of Proposition 4.1 is not true in general, as the next
example shows.

Example 4.2. Consider the Z-module M = Zp∞ with p a prime number. It is
known that S = EndZ(M) is isomorphic to the ring of p-adic numbers. Thus,
S is a commutative Noetherian ring. On the other hand, each submodule of
M is the kernel of an endomorphism of M , hence M does not satisfy the acc
on annihilators.

Lemma 4.3. Let M be M (Λ)-projective for every index set Λ and let K < N
fully invariant submodules of M with N a nil-submodule. If M satisfies acc on
annihilators, then N/K contains a nonzero nilpotent submodule.

Proof. If HomR(M/K,N/K) = 0, then N/K is nilpotent. Also, if Hom(M,N)
= 0, then HomR(M/K,N/K) = 0 by the projectivity condition. Hence,
we can assume that HomR(M/K,N/K) 6= 0 and HomR(M,N) 6= 0. Given
f ∈ HomR(M,N), since K is fully invariant, there is a homomorphism f :
M/K → N/K. On the other hand, since M is quasi-projective, for any
g ∈ HomR(M/K,N/K) there exists f ∈ HomR(M,N) such that πf = gπ,
where π : M → M/K is the canonical projection. Hence, there is a surjective
homomorphism of rings without one HomR(M,N)→ HomR(M/K,N/K). By
hypothesis and Lemma 3.1 we have that, HomR(M,N) and HomR(M/K,N/K)
are nil-ideals of EndR(M) and EndR(M/K), respectively. It follows from
Proposition 4.1 and [6, Lemma 1] that HomR(M/K,N/K) contains a nilpo-
tent ideal. In particular, there is g ∈ HomR(M/K,N/K) such that gT is
nilpotent, say (gT )n = 0, where T = EndR(M/K). It follows from [17, 18.4]
that gT = HomR(M/K, gTM/K). Therefore,

(gT (M/K))n+1 = gT (M/K)nM/KgT (M/K)

= HomR(M/K, gT (M/K))gT (M/K)n
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= HomR(M/K, gT (M/K))2gT (M/K)n−1

= · · ·
= HomR(M/K, gT (M/K))ngT (M/K) = 0. �

Proposition 4.4. Let M be M (Λ)-projective for every index set Λ and let N
be a fully invariant nil-submodule of M . If M satisfies acc on annihilators,
then N is locally nilpotent.

Proof. Since L(M) is a semiprime (fully invariant) submodule of M , M/L(M)
is projective in σ[M/L(M)] and M/L(M) is retractable because it is a semi-

prime module. By Lemma 3.1, N+L(M)
L(M) is a nil-submodule of M/L(M). Sup-

pose N * L(M). By Lemma 4.3, N+L(M)
L(M) contains a nonzero nilpotent sub-

module K
L(M) . Hence, there exists ` > 0 such that K` ⊆ L(M) by Lemma

2.3. It follows from Corollary 3.9 that K ⊆ L(M). Hence K
L(M) = 0. Thus,

N+L(M)
L(M) = 0, that is, N ⊆ L(M). �

Definition. Let M be a module and let N ≤M . The annihilator of N in M
is the submodule

AnnM (N) =
⋂
{Ker f | f ∈ HomR(M,N)}.

The right annihilator of N in M is given by the submodule

AnnrM (N) =
∑
{K ≤M | NMK = 0}.

Remark 4.5. It is not difficult to see that AnnM (N) is a fully invariant submod-
ule of M and it is the largest submodule of M such that AnnM (N)MN = 0.
When M is M (Λ)-projective for every index set Λ, AnnrM (N) is fully invariant
and is the largest submodule of M such that NM AnnrM (N) = 0 [11, Remark
1.15].

Lemma 4.6. Let M be a module and let {Ni}I be a family of submodules of
M . Then

⋂
i∈I AnnrM (Ni) = AnnrM (

∑
i∈I Ni).

Proof. We always have that AnnrM (
∑
i∈I Ni) ⊆ AnnrM (Ni) for all i ∈ I. Hence

AnnrM (
∑
i∈I Ni) ⊆

⋂
i∈I AnnrM (Ni). On the other hand,(∑

i∈I
Ni

)
M

(⋂
i∈I

AnnrM (Ni)

)
=
∑
i∈I

(
NiM

⋂
i∈I

AnnrM (Ni)

)
= 0.

Thus,
⋂
i∈I AnnrM (Ni) = AnnrM (

∑
i∈I Ni). �

Lemma 4.7. Let M be a module. If M satisfies acc on annihilators, then the
set {AnnrM (N) | N ≤M} satisfies dcc.

Proof. We just have to notice that AnnrM (AnnM (AnnrM (N))) = AnnrM (N). �

Lemma 4.8. Suppose M is M (Λ)-projective for every index set Λ. Then,
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(1) lS

(⋂
f∈lS(X) Ker f

)
= lS(X) for any subset X of M .

(2)
⋂
f∈Y Ker f =

⋂{
Ker g | g ∈ lS

(⋂
f∈Y Ker f

)}
for any subset Y of

EndR(M).
(3) M satisfies acc on annihilators if and only if the set {lS(X) | X ⊆M}

satisfies dcc.

Proof. (1) Since X ⊆
⋂
f∈lS(X) Ker f , we have that lS

(⋂
f∈lS(X) Ker f

)
⊆

lS(X). The other inclusion is obvious.

(2) It is clear that
⋂
f∈Y Ker f ⊆

⋂{
Ker g | g ∈ lS

(⋂
f∈Y Ker f

)}
. On the

other hand, since Y ⊆ lS

(⋂
f∈Y Ker f

)
, we have the other inclusion.

(3) It is clear from (1) and (2). �

Proposition 4.9. Suppose M is M (Λ)-projective for every index set Λ and
that M satisfies acc on annihilators. Let AnnrM (N) be a right annihilator in
M . Then M = M/AnnrM (N) satisfies acc on annihilators.

Proof. Since M is M (Λ)-projective for every index set Λ, there is a surjective
ring homomorphism ρ : EndR(M) → EndR(M). Let X be any subset of M
and set S = EndR(M). We claim that the inverse image under ρ of lS(X) is

lS(NM 〈X〉), where X is the inverse image of X under the canonical projection
π : M → M . For each f̄ ∈ lS(X) there is an f ∈ EndR(M) such that
f(X) ⊆ AnnrM (N). Note that f(〈X〉) = 〈f(X)〉 ≤ AnnrM (N). By Lemma
2.2, f(NM 〈X〉) = NMf(〈X〉) = 0. Therefore, f ∈ lS(NM 〈X〉). This implies
that ρ−1(lS(X)) ⊆ lS(NM 〈X〉). Now, let g ∈ lS(NM 〈X〉). Again by Lemma
2.2, 0 = g(NM 〈X〉) = NMg(〈X〉). Hence g(〈X〉) ≤ AnnrM (N). Therefore,
ρ(g)(X) = ρ(g)π(X) = πg(X) = 0. Thus, lS(NM 〈X〉) ⊆ ρ−1(lS(X)), proving

the claim. It follows from Lemma 4.8 that M satisfies acc on annihilators. �

Let M be a module and K ≤ N ≤ M . Let lN (K) denote the intersection
AnnM (K) ∩ N . On the other hand, let rN (K) = AnnrM (K) ∩ N . If N is a
fully invariant submodule of M and K ≤ N , then lN (K) and rN (K) are fully
invariant in M .

Corollary 4.10. Let M be a module. If M satisfies acc on annihilators, then
the set {lN (K) | K ≤ N} satisfies acc and the set {rN (K) | K ≤ N} satisfies
dcc.

Proof. Let K ≤ N ≤M . We claim that lN (K) = AnnM (AnnrM (lN (K))) ∩N .
Since lN (K)M AnnrM (lN (K)) = 0, we have that

lN (K) ⊆ AnnM (AnnrM (lN (K))) ∩N.

On the other hand, lN (K) ⊆ AnnM (K). Hence

AnnrM (lN (K)) ⊇ AnnrM (AnnM (K)).
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Therefore, AnnM (AnnrM (lN (K))) ⊆ AnnM (AnnrM (AnnM (K))) = AnnM (K).
Thus, AnnM (AnnrM (lN (K)))∩N ⊆ AnnM (K)∩N = lN (K) proving the claim.
Now, if

lN (K1) ⊆ lN (K2) ⊆ lN (K3) ⊆ · · ·
is an ascending chain, applying Annr(−) to the chain, we get a descending
chain

AnnrM (lN (K1)) ⊇ AnnrM (lN (K2)) ⊇ AnnrM (lN (K3)) ⊇ · · · .
By Lemma 4.7, there exists ` > 0 such that AnnrM (lN (K`)) = AnnrM (lN (K`+i))
for all i ≥ 0. It follows that

lN (K`) = AnnM (AnnrM (lN (K`))) ∩N
= AnnM (AnnrM (lN (K`+i))) ∩N
= lN (K`+i)

for all i ≥ 0. Analogously, the set {rN (K) | K ≤ N} satisfies dcc. �

Lemma 4.11. Suppose M is M (Λ)-projective for every index set Λ and let
N < M be a fully invariant nil-submodule. If M satisfies acc on annihilators,
then rN (N) 6= 0.

Proof. Set Γ = {rN (K) | K ≤ N and K finitely generated}. It follows from
Corollary 4.10 that Γ has minimal elements. Let rN (K) be a minimal element
in Γ and let n ∈ N . Then K + Rn is a finitely generated submodule of N
and so rN (K) = rN (K + Rn) ⊆ rN (Rn). Hence, rN (K) ⊆

⋂
n∈N rN (Rn) =⋂

n∈N AnnrM (Rn)∩N = AnnrM (
∑
n∈N Rn)∩N = AnnrM (N)∩N = rN (N) by

Lemma 4.6. Now, by Lemma 3.5 and Proposition 4.4, K is nilpotent, that is,
there exists ` > 1 such that K` = 0 but K`−1 6= 0. Therefore 0 6= K`−1 ⊆
rN (K). �

Proposition 4.12. Suppose M is M (Λ)-projective for every index set Λ and let
N < M be a fully invariant nil-submodule such that lN (N j) = 0 for all j > 0. If
M satisfies acc on annihilators, then there exist submodules A1, . . . , Ak, . . . ⊆ N
such that:

(1) A1M · · ·M Ak 6= 0 for all k > 0; and
(2) A1M · · ·M AkMAn = 0 if n ≤ k.

Proof. We construct the submodules inductively. Let A1 = rN (N) 6= 0 by
Lemma 4.11. Note that A1MA1 = 0. To get A2, consider AnnrM (A1). Then
N+Annr

M (A1)
Annr

M (A1) is a nil-submodule of M/AnnrM (A1) by Lemma 3.1. Moreover,

M/AnnrM (A1) satisfies acc on annihilators by Proposition 4.9. Write N =
N+Annr

M (A1)
Annr

M (A1) and M = M/AnnrM (A1). By Lemma 4.11, rN (N) 6= 0. Hence

there exists 0 6= T/AnnrM (A1) ≤ M such that NM (T/AnnrM (A1)) = 0. This
implies that NMT ⊆ AnnrM (A1) and so A1MNMT = 0 but A1MT 6= 0.
Let A2 = rN (A1MN). Therefore A1MA2 6= 0. We have that A1MA2 ⊆
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N , then A1MA2MA1 = 0. On the other hand, A1MA2 ⊆ A1MN . Hence,
A1MA2MA2 ⊆ A1MNMA2 = 0 because definition of A2. Inductively, each
Ai+1 = rN (A1M · · ·M AiMN). �

5. Nilpotency of the prime radical of a Goldie module

In this section, the main theorem is proved and as corollary we get that the
prime radical of a Goldie module M is nilpotent. In [8, Theorem 1] Lanski
proved that nil subrings of a left Goldie ring are nilpotent. We will make use
of this result applied to the endomorphism ring of a Goldie module. For, we
start with the following lemmas.

Lemma 5.1. Let M be a quasi-projective module with endomorphism ring
S = EndR(M) and N =

⋂
f∈I Ker f for some ideal I of S. If M satisfies acc

on annihilators, then so does M/N .

Proof. Note that N is a fully invariant submodule of M because I is an ideal. It
is enough to show that inverse image, under the canonical projection π : M →
M/N , of an annihilator in M/N is an annihilator in M . Let Y ⊆ EndR(M/N).
Consider

⋂
f̄∈Y Ker f̄ in M/N . Hence

⋂
f̄∈Y Ker f̄ = A/N for some submodule

A of M . Since M is quasi-projective, given f̄ ∈ Y there exists f ∈ EndR(M)

such that πf = f̄π. Let Ŷ = {f ∈ EndR(M) | πf = f̄π for some f̄ ∈ Y }.
It follows that f(A) ⊆ N for all f ∈ Ŷ and so, gf(A) = 0 for all f ∈ Ŷ and

all g ∈ I. Let Y = {gf | g ∈ I and f ∈ Ŷ }. Therefore, A ⊆
⋂
gf∈Y Ker gf .

Now, let x ∈
⋂
gf∈Y Ker gf and let f̄ ∈ Y . Then f̄π(x) = π(f(x)). Since

g(f(x)) = 0 for all g ∈ I, f(x) ∈ N . Hence π(f(x)) = 0. It follows that x ∈ A.
Thus A =

⋂
gf∈Y Ker gf . �

Recall that a module M is said to be retractable if HomR(M,N) 6= 0 for
every nonzero submodule N of M .

Lemma 5.2. Let M be M (Λ)-projective for every index set Λ and let N ≤M .
If M is retractable, then

(1) M/AnnrM (N) is retractable.
(2) M/AnnM (N) is retractable.

Proof. (1) Let K/AnnrM (N) be a submodule of M/AnnrM (N) and suppose
that

HomR(M/AnnrM (N),K/AnnrM (N)) = 0.

Since AnnrM (N) is fully invariant inM , any homomorphism f : M → K induces
a homomorphism f : M/AnnrM (N) → K/AnnrM (N) such that πf = fπ,
where π : M → M/AnnrM (N) is the canonical projection. This implies that
for all f ∈ HomR(M,K), f(M) ⊆ AnnrM (N). Therefore 0 = NM (MMK) =
(NMM)MK = NMK. Hence K ⊆ AnnrM (N) and so K/AnnrM (N) = 0. Thus
M/AnnrM (N) is retractable.
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(2) Let K/AnnM (N) be a submodule of M/AnnM (N) and suppose that

HomR(M/AnnM (N),K/AnnM (N)) = 0.

As in the previous proof, we get

0 = trM (K)MN = (MMK)MN = MM (KMN) = trM (KMN).

This implies that KMN = 0 because M is retractable. Thus, K ⊆ AnnM (N).
Hence M/AnnM (N) is retractable. �

Lemma 5.3. Suppose M is M (Λ)-projective for every index set Λ and re-
tractable. If M is Goldie, then S = EndR(M) is a right Goldie ring.

Proof. By Proposition 4.1, S satisfies acc on right annihilators. Since M has
finite uniform dimension, so does SS by [5, Theorem 2.6]. Thus, S is a right
Goldie ring. �

Theorem 5.4. Suppose M is M (Λ)-projective for every index set Λ and re-
tractable. If M is a Goldie module and N < M is a fully invariant nil-
submodule, then N is nilpotent.

Proof. There is an ascending chain of submodules of M ,

AnnM (N) ⊆ AnnM (N2) ⊆ AnnM (N3) ⊆ · · · .
By hypothesis, there exists a positive integer k such that

AnnM (Nk) = AnnM (Nk+i)

for all i > 0. Denote

N = (N + AnnM (Nk))/AnnM (Nk) and M = M/AnnM (Nk).

We claim that lN (N
j
) = 0 for all j > 0.

If lN (N
j
) = A/AnnM (Nk) with A ≤M , then AMN

j ≤ AnnM (Nk). Hence,

AMN
k+j = (AMN

j)MN
k = 0. Therefore A ⊆ AnnM (Nk+j) = AnnM (Nk).

Thus lN (N
j
) = 0, proving the claim.

If N is not nilpotent, then N is a nil-submodule of M by Lemma 3.1. More-
over, M is retractable and satisfies acc on annihilators by Lemma 5.2 and
Lemma 5.1. Hence, there exist nonzero submodules A1, . . . , Ai, . . . ⊆ N by
Proposition 4.12 such that

(i) A1M · · ·M Ai 6= 0 for all i > 0; and

(ii) A1M · · ·M AiMAj = 0 if j ≤ i.
Consider the inverse images of the submodules Ai, AnnM (Nk) ⊆ A1, . . . , Ai, . . .
⊆ N + AnnM (Nk). Intersecting with N , we have

lN (N) ⊆ AnnM (Nk) ∩N ⊆ (A1 ∩N), . . . , (Ai ∩N), . . . ⊆ N.
Suppose that lN (N) 6= 0. Then Ai ∩ N 6= 0. Let Bi denote the submodule
Ai ∩N . Hence, the submodules B1, . . . , Bi, . . . satisfy:

(1) B1M · · ·M Bi 6= 0 for all i > 0; and
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(2) B1M · · ·M BiMBj ⊆ lN (Nk) if j ≤ i.
Condition (1) implies that there exists a sequence {f1, f2, . . . , fi, . . .} ⊆ HomR

(M,N), with fi : M → Bi for all i > 0, such that fi · · · f2f1 6= 0 for all i > 0
and the condition (2) says that g(fjfi · · · f2f1(M)) = 0 for all g : M → Nk

if j ≤ i. Note that fi+1fi(M) ⊆ fi+1(N) ⊆ N2. Consider {fj+1, . . . , fj+k}
with j ≤ i. Then fj+k · · · fj+1(M) ⊆ Nk, that is, fj+k · · · fj+1 : M → Nk.
It follows that fj+k · · · fj+1fjfi · · · f2f1 = 0 for j ≤ i. Thus, we just got the
elements described in [8, Lemma 8], that is, elements {f1, f2, . . . , fi, . . .} ⊆ S
such that

(1) fi · · · f2f1 6= 0 for all i > 0; and
(2) fj+k · · · fj+1fjfi · · · f2f1 = 0 for j ≤ i.

Since M is a Goldie module, if follows from Lemma 5.3 that S is a right Goldie
ring. Following the proof of [8, Theorem 1], we arrive to a contradiction and
so N is nilpotent.

In the case lN (N) = 0, then we start the proof with M = M and Ai = Ai
for all i > 0. �

Corollary 5.5. Suppose M is M (Λ)-projective for every index set Λ and re-
tractable. If M is a Goldie module, then the prime radical of M is nilpotent.
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Benemérita Universidad Autónoma de Puebla

Av. San Claudio y 18 Sur, Col. San Manuel, Ciudad Universitaria, 72570

Puebla, México
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