DOI QR코드

DOI QR Code

ANALYSIS OF AN SEIQRVS EPIDEMIC DYNAMICS FOR INFECTIOUS VIRAL DISEASE: QUARANTINE AS A CONTROL STRATEGY

  • RAKESH SINGH, TOMAR (Department of Applied Sciences, ABV- Indian Institute of Information Technology & Management Gwalior) ;
  • JOYDIP, DHAR (Department of Applied Sciences, ABV- Indian Institute of Information Technology & Management Gwalior) ;
  • AJAY, KUMAR (Department of Applied Sciences, ABV- Indian Institute of Information Technology & Management Gwalior)
  • 투고 : 2022.02.08
  • 심사 : 2022.06.05
  • 발행 : 2023.01.30

초록

An epidemic infectious disease model consists of six compartments viz. Susceptible, Exposed, Infected, Quarantine, Recovered, and Virus with nonlinear saturation incidence rate is proposed to know the viral disease dynamics. There exist two biological equilibrium points for the model system. The system's local and global stability is done through Lyapunov's direct method about equilibrium points. The sensitivity analysis has been performed for the basic reproduction number and equilibrium points through the normalized forward sensitivity index. Sensitivity analysis shows that virus growth and quarantine rates are more sensitive parameters. In support of mathematical conclusions, numerical experimentation has been shown.

키워드

과제정보

The authors acknowledge the ABV-IIITM and the ministry of education, India, for providing the necessary facility for this work.

참고문헌

  1. K. Best and A.S. Perelson, Mathematical modeling of within-host zika virus dynamics, Immu. reviews 285 (2018), 81-96. https://doi.org/10.1111/imr.12687
  2. K.C. Castillo-Chavez, S. Blower, P. Van den Driessche, D. Kirschner, and A.A. Yakubu, Mathematical approaches for emerging and reemerging infectious diseases: an introduction, Spri. Scie. Busi. Media 1 2002.
  3. F. Chamchod and N.F. Britton, On the dynamics of a two-strain influenza model with isolation, Math. Mode. Natu. Phenomena 7 (2012), 49-61. https://doi.org/10.1051/mmnp/20127305
  4. N. Chitnis, J.M. Hyman, and J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. math. biology 70 (2008), 1272-1296. https://doi.org/10.1007/s11538-008-9299-0
  5. T. Day, A. Park, N. Madras, A. Gumel, and J. Wu, When is quarantine a useful control strategy for emerging infectious diseases, Amer. J. Epidemiology 163 (2006), 479-485. https://doi.org/10.1093/aje/kwj056
  6. O. Diekmann, J.A.P. Heesterbeek, and J.A. Metz, On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations, J. math. biology 28 (1990), 365-382. https://doi.org/10.1007/BF00178324
  7. A. Elaiw and N.H. AlShamrani, Global properties of general viral infection models with humoral immune response, Diff. Equa. Dyna. Systems 25 (2017), 453-479. https://doi.org/10.1007/s12591-015-0247-9
  8. K. Hattaf and Y. Yang, Global dynamics of an age-structured viral infection model with general incidence function and absorption, Int. J. Biomathematics 11 (2018). doi.org/10.1142/S17935245185006511850065
  9. A.L. Hill, D.I. Rosenbloom, M.A. Nowak, and R.F. Siliciano, Insight into treatment of hiv infection from viral dynamics models, Immu. reviews 285 (2018), 9-25. https://doi.org/10.1111/imr.12698
  10. C.N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C.R. MacIntyre, M.H. Bonds, and A.B. Gumel, Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus, Math. Biosciences (2020), 108-364.
  11. L. Perko, Differential equations and dynamical systems, Spri. Scie. Busi. Media, 2013.
  12. M. Safi, Mathematical Analysis of The Role of Quarantine and Isolation in Epidemiology, Ph.D. thesis, University of Manitoba Winnipeg Manitoba, 2010.
  13. M.A. Safi and A.B. Gumel, Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals, J. Math. Anal. Appl. 399 (2013), 565-575. https://doi.org/10.1016/j.jmaa.2012.10.015
  14. G.P. Sahu and J. Dhar, Analysis of an sveis epidemic model with partial temporary immunity and saturation incidence rate, Appl. Math. Modelling 36 (2012), 908-923. https://doi.org/10.1016/j.apm.2011.07.044
  15. G.P. Sahu and J. Dhar, Dynamics of an seqihrs epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, J. math. anal. appl. 421 (2015), 1651-1672. https://doi.org/10.1016/j.jmaa.2014.08.019
  16. P.K. Srivastava, M. Banerjee, and P. Chandra, Dynamical model of in-host hiv infection: With drug therapy and multi viral strains, J. Biol. Systems 20 (2012), 303-325. https://doi.org/10.1142/S021833901250012X
  17. C. Sun and W. Yang, Global results for an sirs model with vaccination and isolation, Nonl. Anal.: Real World Applications 11 (2010), 4223-4237. https://doi.org/10.1016/j.nonrwa.2010.05.009
  18. M. Van Baalen, Contact networks and the evolution of virulence Adaptive dynamics of infectious diseases: in pursuit of virulence management, Cambridge Univ. Press, Cambridge, UK, 2002, 85-103.
  19. P. Van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. biosciences 180 (2002), 29-48. https://doi.org/10.1016/S0025-5564(02)00108-6
  20. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Spri. Scie. Busi. Media, 2003.
  21. R. Xu and Z. Ma, Global stability of a delayed seirs epidemic model with saturation incidence rate, Nonlinear Dynamics 61 (2010), 229-239. https://doi.org/10.1007/s11071-009-9644-3