과제정보
The authors acknowledge the ABV-IIITM and the ministry of education, India, for providing the necessary facility for this work.
참고문헌
- K. Best and A.S. Perelson, Mathematical modeling of within-host zika virus dynamics, Immu. reviews 285 (2018), 81-96. https://doi.org/10.1111/imr.12687
- K.C. Castillo-Chavez, S. Blower, P. Van den Driessche, D. Kirschner, and A.A. Yakubu, Mathematical approaches for emerging and reemerging infectious diseases: an introduction, Spri. Scie. Busi. Media 1 2002.
- F. Chamchod and N.F. Britton, On the dynamics of a two-strain influenza model with isolation, Math. Mode. Natu. Phenomena 7 (2012), 49-61. https://doi.org/10.1051/mmnp/20127305
- N. Chitnis, J.M. Hyman, and J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. math. biology 70 (2008), 1272-1296. https://doi.org/10.1007/s11538-008-9299-0
- T. Day, A. Park, N. Madras, A. Gumel, and J. Wu, When is quarantine a useful control strategy for emerging infectious diseases, Amer. J. Epidemiology 163 (2006), 479-485. https://doi.org/10.1093/aje/kwj056
- O. Diekmann, J.A.P. Heesterbeek, and J.A. Metz, On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations, J. math. biology 28 (1990), 365-382. https://doi.org/10.1007/BF00178324
- A. Elaiw and N.H. AlShamrani, Global properties of general viral infection models with humoral immune response, Diff. Equa. Dyna. Systems 25 (2017), 453-479. https://doi.org/10.1007/s12591-015-0247-9
- K. Hattaf and Y. Yang, Global dynamics of an age-structured viral infection model with general incidence function and absorption, Int. J. Biomathematics 11 (2018). doi.org/10.1142/S17935245185006511850065
- A.L. Hill, D.I. Rosenbloom, M.A. Nowak, and R.F. Siliciano, Insight into treatment of hiv infection from viral dynamics models, Immu. reviews 285 (2018), 9-25. https://doi.org/10.1111/imr.12698
- C.N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C.R. MacIntyre, M.H. Bonds, and A.B. Gumel, Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus, Math. Biosciences (2020), 108-364.
- L. Perko, Differential equations and dynamical systems, Spri. Scie. Busi. Media, 2013.
- M. Safi, Mathematical Analysis of The Role of Quarantine and Isolation in Epidemiology, Ph.D. thesis, University of Manitoba Winnipeg Manitoba, 2010.
- M.A. Safi and A.B. Gumel, Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals, J. Math. Anal. Appl. 399 (2013), 565-575. https://doi.org/10.1016/j.jmaa.2012.10.015
- G.P. Sahu and J. Dhar, Analysis of an sveis epidemic model with partial temporary immunity and saturation incidence rate, Appl. Math. Modelling 36 (2012), 908-923. https://doi.org/10.1016/j.apm.2011.07.044
- G.P. Sahu and J. Dhar, Dynamics of an seqihrs epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, J. math. anal. appl. 421 (2015), 1651-1672. https://doi.org/10.1016/j.jmaa.2014.08.019
- P.K. Srivastava, M. Banerjee, and P. Chandra, Dynamical model of in-host hiv infection: With drug therapy and multi viral strains, J. Biol. Systems 20 (2012), 303-325. https://doi.org/10.1142/S021833901250012X
- C. Sun and W. Yang, Global results for an sirs model with vaccination and isolation, Nonl. Anal.: Real World Applications 11 (2010), 4223-4237. https://doi.org/10.1016/j.nonrwa.2010.05.009
- M. Van Baalen, Contact networks and the evolution of virulence Adaptive dynamics of infectious diseases: in pursuit of virulence management, Cambridge Univ. Press, Cambridge, UK, 2002, 85-103.
- P. Van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. biosciences 180 (2002), 29-48. https://doi.org/10.1016/S0025-5564(02)00108-6
- S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Spri. Scie. Busi. Media, 2003.
- R. Xu and Z. Ma, Global stability of a delayed seirs epidemic model with saturation incidence rate, Nonlinear Dynamics 61 (2010), 229-239. https://doi.org/10.1007/s11071-009-9644-3