DOI QR코드

DOI QR Code

THE PRICING OF VULNERABLE FOREIGN EXCHANGE OPTIONS UNDER A MULTISCALE STOCHASTIC VOLATILITY MODEL

  • MIJIN, HA (Department of Mathematics, Pusan National University) ;
  • DONGHYUN, KIM (Department of Mathematics, Pusan National University) ;
  • JI-HUN, YOON (Department of Mathematics, Pusan National University)
  • 투고 : 2022.04.08
  • 심사 : 2022.10.03
  • 발행 : 2023.01.30

초록

Foreign exchange options are derivative financial instruments that can exchange one currency for another at a prescribed exchange rate on a specified date. In this study, we examine the analytic formulas for vulnerable foreign exchange options based on multi-scale stochastic volatility driven by two diffusion processes: a fast mean-reverting process and a slow mean-reverting process. In particular, we take advantage of the asymptotic analysis and the technique of the Mellin transform on the partial differential equation (PDE) with respect to the option price, to derive approximated prices that are combined with a leading order price and two correction term prices. To verify the price accuracy of the approximated solutions, we utilize the Monte Carlo method. Furthermore, in the numerical experiments, we investigate the behaviors of the vulnerable foreign exchange options prices in terms of model parameters and the sensitivities of the stochastic volatility factors to the option price.

키워드

과제정보

M. Ha received financial support from the BK21 FOUR Program by the Pusan National University Research Grant, 2021 and the research by J.-H. Yoon was supported by the National Research Foundation of Korea grants funded by the Korean government (NRF-2019R1A2C108931011).

참고문헌

  1. F. Antonelli, A. Ramponi, and S. Scarlatti, Exchange option pricing under stochastic volatility: a correlation expansion, Rev. Deriv. Res. 13 (2010), 45-73. https://doi.org/10.1007/s11147-009-9043-4
  2. Bank for International Settlements, "Foreign Exchange Turnover in April 2019, https://www.bis.org/statistics/rpfx19fx.htm".
  3. F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, J. Political Econ. 81 (1973), 637-654.
  4. W.-T. Chen and S.-P. Zhu, Pricing perpetual American puts under multi-scale stochastic volatility, Asymptot. Anal. 80 (2012), 133-148.
  5. S.-Y. Choi, J.-H. Kim, and J.-H. Yoon, The Heston model with stochastic elasticity of variance, Appl. Stoch. Models Bus. Ind. 32 (2016), 804-824. https://doi.org/10.1002/asmb.2203
  6. S.-Y. Choi, J.-H. Kim, and J.-H. Yoon, Foreign exchange rate volatility smiles and smirks, Applied Stochastic Models in Business and Industry 37 (2021), 628-660. https://doi.org/10.1002/asmb.2602
  7. S.-Y. Choi, S. Veng, J.-H. Kim, and J.-H. Yoon, A Mellin Transform Approach to the Pricing of Options with Default Risk, Comput. Econ. 59 (2021), 1113-1134. https://doi.org/10.1007/s10614-021-10121-w
  8. J.-P. Fouque, G. Papanicolaou, and R. Sircar, Asymptotics of a two-scale stochastic volatility model, Equations aux derivees partielles et applications, in honour of Jacques-Louis Lions (1998), 517-525.
  9. J.-P. Fouque, G. Papanicolaou, and R. Sircar, Mean-reverting stochastic volatility, Int. J. Theor. Appl. 3 (2000), 101-142. https://doi.org/10.1142/S0219024900000061
  10. J.-P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Singular perturbations in option pricing, SIAM J. Appl. Math. 63 (2003), 1648-1665. https://doi.org/10.1137/S0036139902401550
  11. J.-P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Multiscale stochastic volatility for equity, interest rate, and credit derivatives, Cambridge University Press, Cambridge, 2011.
  12. J.-P. Fouque and M. J. Lorig, A fast mean-reverting correction to Heston's stochastic volatility model, SIAM J. Financ. Math. 2 (2011), 221-254. https://doi.org/10.1137/090761458
  13. J.-P. Fouque, M. Lorig, and R. Sircar, Second order multiscale stochastic volatility asymptotics: stochastic terminal layer analysis and calibration, Finance Stoch. 20 (2016), 543-588. https://doi.org/10.1007/s00780-016-0298-y
  14. S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud. 6 (1993), 327-343. https://doi.org/10.1093/rfs/6.2.327
  15. M.W. Hung and Y.H. Liu, Pricing vulnerable options in incomplete markets, J. Futures Mark. 25 (2005), 135-170.
  16. J. Jeon, J.-H. Yoon, and M. Kang, Valuing vulnerable geometric Asian options, Comput. Math. Appl. 71 (2016), 676-691. https://doi.org/10.1016/j.camwa.2015.12.038
  17. J. Jeon, J.-H. Yoon, and M. Kang, Pricing vulnerable path-dependent options using integral transforms, Comput. Appl. Math. 313 (2017), 259-272. https://doi.org/10.1016/j.cam.2016.09.024
  18. J. Jeon, J.-H. Yoon, and C.-R. Park, The pricing of dynamic fund protection with default risk, J. Comput. Appl. Math. 333 (2018), 116-130. https://doi.org/10.1016/j.cam.2017.10.031
  19. J. Jeon, G. Kim, and J. Huh, An asymptotic expansion approach to the valuation of vulnerable options under a multiscale stochastic volatility model, Chaos Solit. Fractals 144 (2021), 110641.
  20. H. Johnson and R. Stulz, The pricing of options with default risk, J. Finance 42 (1987), 267-280. https://doi.org/10.1111/j.1540-6261.1987.tb02567.x
  21. D. Kim, S.-Y. Choi, and J.-H. Yoon, Pricing of vulnerable options under hybrid stochastic and local volatility, Chaos Solit. Fractals 146 (2021), 110846.
  22. D. Kim, J.-H. Yoon, and C.-R. Park, Pricing external barrier options under a stochastic volatility model, Comput. Appl. Math. 394 (2021), 113555.
  23. D. Kim, G. Kim, and J.-H. Yoon, Pricing of vulnerable exchange options with early counterparty credit risk, North Am. J. Econ. Finance 2022 (2022), 101624.
  24. G. Kim and E. Koo, Closed-form pricing formula for exchange option with credit risk, Chaos Solit. Fractals 91 (2016), 221-227. https://doi.org/10.1016/j.chaos.2016.06.005
  25. J.-H. Kim, M.-K. Lee, and S.Y. Sohn, Investment timing under hybrid stochastic and local volatility, Chaos Solit. Fractals 67 (2014), 58-72. https://doi.org/10.1016/j.chaos.2014.06.007
  26. P. Klein, Pricing Black-Scholes options with correlated credit risk, J. Bank Financ. 20 (1996), 1211-1229. https://doi.org/10.1016/0378-4266(95)00052-6
  27. S. Lindset, Pricing American exchange options in a jump-diffusion model, J. Futures Mark.: Futures, Options, and Other Derivative Products 27 (2007), 257-273.
  28. W. Margrabe, The value of an option to exchange one asset for another, J. Finance 33 (1978), 177-186. https://doi.org/10.1111/j.1540-6261.1978.tb03397.x
  29. X. Wang, Pricing European basket warrants with default risk under stochastic volatility models, Appl. Econ. Lett. 2020 (2020), 253-260.
  30. S.-J. Yang, M.-K. Lee, and J.-H. Kim, Pricing vulnerable options under a stochastic volatility model, Appl. Math. Lett. 34 (2014), 7-12. https://doi.org/10.1016/j.aml.2014.03.007
  31. J.-H. Yoon, Pricing perpetual American options under multiscale stochastic elasticity of variance, Chaos Solit. Fractals 70 (2015), 14-26. https://doi.org/10.1016/j.chaos.2014.10.012
  32. J.-H. Yoon and J.-H. Kim, The pricing of vulnerable options with double Mellin transforms, J. Math. Anal. Appl. 422 (2015), 838-857. https://doi.org/10.1016/j.jmaa.2014.09.015