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Abstract. Foreign exchange options are derivative financial instruments

that can exchange one currency for another at a prescribed exchange rate

on a specified date. In this study, we examine the analytic formulas for
vulnerable foreign exchange options based on multi-scale stochastic volatil-

ity driven by two diffusion processes: a fast mean-reverting process and a

slow mean-reverting process. In particular, we take advantage of the as-
ymptotic analysis and the technique of the Mellin transform on the partial

differential equation (PDE) with respect to the option price, to derive ap-
proximated prices that are combined with a leading order price and two

correction term prices. To verify the price accuracy of the approximated

solutions, we utilize the Monte Carlo method. Furthermore, in the nu-
merical experiments, we investigate the behaviors of the vulnerable foreign

exchange options prices in terms of model parameters and the sensitivities

of the stochastic volatility factors to the option price.
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1. Introduction and Literature Review

Vulnerable foreign exchange options are derivatives that combine stan-
dard vulnerable and foreign exchange options. Many options traded in over-
the-counter (OTC) markets are exposed to default risks, so it is less likely that
an option writer fulfills their contractual obligations. After the global financial
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crisis in 2007-2008, given the growing concerns about contingent claims with de-
fault risks, counterparty credit risks have been considered when pricing options
are traded OTC. The vulnerable option refers to a financial instrument that con-
siders the default risk of the counterparty (or the option writer) and was first
proposed by Johnson and Stulz [20] in 1987. Since then, Klein [26] found an
analytic pricing formula that deals with other liabilities of the option writer in
the capital structure, the correlation between the option’s underlying asset, and
the default risk of the counterparty. In contrast, Hung and Liu [15] and Yang et
al. [30] examined the pricing of vulnerable options as the market is incomplete.

Unlike general vanilla options, vulnerable options have more complicated sto-
chastic dynamics representing the underlying asset process and the process of
the option writer’s market value. In other words, determining the fair price of
vulnerable options is equivalent to solving the (1+2)-dimensional partial differ-
ential equation (PDE) with one time variable and two state variables. Several
studies have been conducted on the pricing of vulnerable options using PDEs.
Yoon and Kim [32] first studied the price of vulnerable European vanilla options
by solving the given (1+2)-dimensional PDEs by utilizing an integral transform
method. Applications of such vulnerable options in other types of financial
problems, except for the pricing of European vanilla options, have been studied
by [16], [17], [18], [22], [21], and [19].

Foreign Exchange Options are derivatives that trade the right to exchange
one underlying asset for another. In particular, as a popular option used in
foreign exchange transactions, it is usually traded by individuals, institutions,
and governments to hedge risk from exchange rates effectively. According to
2019 Triennial Central Bank Survey of FX and OTC markets [2], the trade
volume of foreign exchange option is roughly $6.6 trillion. Therefore, based on
its usefulness, there have been many studies on foreign exchange (exotic) options.
For example, Lindset [27] presented the price of the American exchange option
under the assumption that the underlying assets follow jump-diffusion processes.
Antonelli et al. [1] dealt with the pricing of exchange options under a stochastic
volatility model. Kim and Koo [24] obtained closed-form solutions for foreign
exchange options with credit risk. Recently, Kim et al. [23] derived closed-
form solutions of exchange options considering early counterparty credit risks
by adding the nature of credit risk to the existing exchange options.

As financial markets become increasingly complicated, the Black-Scholes model
[3] has been widely used for pricing and hedging financial instruments because
of its theoretical simplicity and practical usefulness. However, the assumption
of a standard Black-Scholes model for underlying asset prices cannot reflect the
empirical evidence in the financial market. In particular, many exogenous vari-
ables and extraordinary volatility behavior have had a significant impact on the
market after the global financial crisis in 2007-2008, as shown in Choi et al. [7],
and market participants trading financial derivatives have become interested in
models that can forecast the behaviors of financial assets in the market exactly
and effectively. Thus, if we consider that the volatility of an underlying asset
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follows more exogenous stochastic phenomena and then fluctuates very quickly
throughout the lifetime of financial derivatives, it can be seen that the volatility
is well modelled as a fast mean-reverting stochastic process, and the stochastic
volatility (SV) model is well known for explaining their dynamics and reflecting
real situations in financial markets. The Heston model (cf. Heston [14]) and
the fast mean-reverting SV model proposed by Fouque et al. [11] have become
representative SV models designed to capture the environment of the mean-
reversion of volatility in the financial market. However, the structure of SV
models is very complicated. To deal with the complex structures of the model
dynamics, Fouque et al. [11] derived PDEs for option prices, and then took ad-
vantage of the singular-regular perturbation method on the PDEs because it is
difficult to solve the PDEs directly. Applications of the perturbation method
in PDEs enable us to find analytic solutions for option prices very easily and
effectively. Since Fouque et al. [8, 10, 12] first introduced the pricing of various
options by exploiting the singular perturbation method, many mathematicians
have begun to focus on the diverse option pricing formula reflecting financial eco-
nomics situations. Jeon et al. [19] studied the values of vulnerable options under
a multi-scale stochastic volatility model utilizing a singular-regular perturbation
approach, and Kim et al. [22] presented a pricing formula for the external bar-
rier option under a (pure) stochastic volatility model using asymptotic analysis
and the method of images to handle the boundary conditions. Developing the
European vanilla options, Wang [29] derived the pricing formula for vulnerable
basket warrants under stochastic volatility models, and especially, Choi et al. [6]
studied the properties of the implied volatilities of foreign exchange markets such
as EUD/USD, GBP/USD, and AUD/USD under a hybrid stochastic and local
volatility (SLV) model by the same asymptotic techniques.

In this study, we deal with the vulnerable foreign exchange options
under a multi-scale stochastic volatility (MSV). According to Jeon et
al. [19] and Fouque et al. [11], it is clear that the MSV model was analyzed and
showed better calibration results, based on the empirical data such as S&P 500,
especially. We incorporate stochastic volatility models into foreign exchange
options with default risk, where the multi-scale stochastic volatility consists
of stochastic volatility terms driven by fast-mean-reverting diffusion and slow-
varying diffusion processes. We note that the two diffusions are governed by
Ornstein-Uhlenbeck processes, based on the empirical fact that volatility con-
verges to the long-run average. To find the analytic solutions for the exchange
option prices with MSV, we use a multi-scale analysis (or singular-regular per-
turbation method). In other words, by applying the multi-scale analysis to the
given PDE problems for the option value and commuting property, we obtain
the approximated formulas for the option prices. Furthermore, using the Monte
Carlo method, we examine the pricing accuracy of the approximated options
and investigate the sensitivities of the stochastic volatility factors on the option
values.
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The remainder of this paper is organized as follows. In Section 2, we construct
the model dynamics for vulnerable exchange options under MSV and introduce
a (multi) stochastic volatility model. In Section 3, from the asymptotic analysis,
we obtain the approximated option prices composed of one leading order price
and two correction order prices, and theoretically provide the pricing accuracy for
the option values. Section 4 verifies the accuracy of the approximated solutions
of the option price by comparing it with the solution obtained from the Monte
Carlo method and examines the price impact of MSV on the vulnerable exchange
options with regard to the option parameters. Finally, concluding remarks are
presented in Section 5.

2. The model

In this section, we construct mathematical circumstances for vulnerable options
on foreign exchange markets under multiscale stochastic volatility. Let a filtered
probability space (Ω,F ,Ft|0≤t≤T ,P∗), where Ω is a set of outcomes, F is a set
of events (σ− field), Ft is a filtration generated by the Brownian motion, and P∗

is a martingale measure (or risk-neutral measure). Next, under the equivalent
martingale measure P∗, we establish the stochastic dynamics for the domestic
currency S1 and the foreign currency S2 by

dS1(t) = rS1(t) dt+ f(Y (t), Z(t))S1(t) dW
∗
1 (t),

dS2(t) = rS2(t) dt+ σFS2(t) dW
∗
2 (t),

(1)

respectively. Here, r is the risk-free interest rate with a constant value, and σF is
the constant volatility of foreign currency S2(t). According to Fouque et al. [12],
the stochastic volatility f(Y (t), Z(t)) of the domestic currency S1(t) is driven by
two factors: the fast reverting factor Y and the slowly varying factor Z, where
the function f is a positive smooth function such that

∫
R f

2(·, z)dz < ∞. In
market model (1), the fast-mean-reverting process (Ornstein-Uhlenbeck process,
OU process) Y (t) is governed by

dY (t) =

[
κ(m− Y (t))− u

√
2√
ϵ
Λy(Y (t), Z(t))

]
dt+

u
√
2√
ϵ
dW ∗

y (t), (2)

where κ := ϵ−1 is the fast reverting rate that the process Y (t) converges to the

mean level m, and u
√
2√
ϵ

is the variance of Y (t), and the function Λy(Y (t), Z(t))

is the market price of volatility risk which is assumed to be a constant in this
paper. Also, we consider the slowly varying diffusion Z(t)

dZ(t) =
[
δc(Z(t))−

√
δg(Z(t))Λz(Y (t), Z(t))

]
dt+

√
δg(Z(t))dW ∗

z (t), (3)

where δ is a small time-scale parameter such that 0 < ϵ < δ <
√
ϵ≪ 1, c(·) and

g(·) are smooth functions, and Λz(Y (t), Z(t)) is the market price of the volatility
risk which is also assumed to be a constant. Finally, because we focus on the
vulnerable options in the foreign exchange market with a multi-scale stochastic
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volatility model, we consider the dynamics of the market value of the option’s
issuer (that is, the writer) V (t) as follows:

dV (t) = rV (t) dt+ σV V (t) dW ∗
3 (t) (4)

where σV denotes a constant volatility for V .
In the dynamics (1)-(4), the instantaneous correlations between Brownian

motions W ∗
1 (t), W

∗
2 (t), W

∗
3 (t), W

∗
y (t), and W

∗
z (t) are expressed by

d ⟨W ∗
1 ,W

∗
2 ⟩t = ρ12dt, d ⟨W ∗

1 ,W
∗
3 ⟩t = ρ13dt, d⟨W ∗

1 ,W
∗
y ⟩t = ρ1ydt,

d⟨W ∗
1 ,W

∗
z ⟩t = ρ1zdt, d ⟨W ∗

2 ,W
∗
3 ⟩t = ρ23dt, d⟨W ∗

2 ,W
∗
y ⟩t = ρ2ydt,

d⟨W ∗
2 ,W

∗
z ⟩t = ρ2zdt, d⟨W ∗

3 ,W
∗
y ⟩t = ρ3ydt, d⟨W ∗

3 ,W
∗
z ⟩t = ρ3zdt,

d⟨W ∗
y ,W

∗
z ⟩t = ρyzdt,

where the correlations ρ12, ρ13, ρ1y, ρ1z, ρ23, ρ2y, ρ2z, ρ3y ρ3z, ρyz ∈ [−1, 1] and
we assume that ρ2y = ρ2z = ρ3y = ρ3z = 0.

Then, under the equivalent martingale measure P∗, the fair option’s price
P ϵ,δ = P ϵ,δ(t, s1, s2, v, y, z) at the current time t(≥ 0) is a conditional expecta-
tion of the discounted payoff. i.e.,

P ϵ,δ = E∗
[
e−r(T−t)h(S1(T ), S2(T ), V (T ), Y (T ), Z(T ))

∣∣∣∣Ft

]
, (5)

where E∗[·] means the expectation under the equivalent martingale measure P∗,
the information up to the current time (Ft) is given by Ft = {S1(t) = s1, S2(t) =
s2, V (t) = v, Y (t) = y, Z(t) = z}, and the final condition (or payoff function)
h = h(S1(T ), S2(T ), V (T ), Y (T ), Z(T )) is given by

h = (S1(T )− S2(T ))
+

(
1{V (T )>D∗} +

1− α

D
V (T )1{V (T )≤D∗}

)
, (6)

as observed in [23]. The payoff function (6) consists of two parts: (i) The first
part (S1(T )−S2(T ))

+ demonstrates the standard foreign exchange options. The
buyer of the options abandons currency S2 and receives another currency S1

at maturity time T . (ii) The second part
(
1{V (T )>D∗} +

1−α
D V (T )1{V (T )≤D∗}

)
proposed by Johnson and Stulz [20] describes the credit risks of the option writer,
where α is the deadweight cost related to the bankruptcy of the counterparty, D
denotes the total liabilities given by D∗, and D∗ represents the critical level (or
default boundary) for the default. If the market value of the option writer, V (T ),
is greater than the critical level D∗, the standard profit (S1 − S2)

+ at maturity
T . Otherwise, counterparty credit risk occurs and only the 1−α

D V (T )(S1(T ) −
S2(T ))

+ is paid out.

3. Derivation of Pricing Formula

By applying the Feynman-Kac formula to the expectation representation (5),
the price function P (t, s1, s2, v, y, z) satisfies the following partial differential
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equation (PDE):
1

ϵ

(
(m − y)Py + u

2
Pyy

)
+

1
√
ϵ

(
−u

√
2Λy(y, z)Py + u

√
2ρ1yf(y, z)s1Ps1y

)
− rP + Pt + rs1Ps1 + rs2Ps2 + rvPv +

f2(y, z)

2
s
2
1Ps1s1 +

σ2
F

2
s
2
2Ps2s2 +

σ2
V

2
v
2
Pvv

+ σF ρ12f(y, z)s1s2Ps1s2 + σV ρ13f(y, z)s1vPs1v + σFσV ρ23s2vPs2v

√
δ
(
−g(z)Λz(y, z)Pz + g(z)ρ1zf(y, z)s1Ps1z

)
+ δ

(
c(z)Pz +

g2(z)

2
Pzz

)
+

ug(z)
√
2δ

√
ϵ

ρyzPyz = 0

(7)

with the final condition P (T, s1, s2, v, y, z) = (s1−s2)+
(
1{v>D∗} +

1−α
D v1{v≤D∗}

)
on the domain {(t, s1, s2, v, y, z) : t ∈ [0, T ), s1, s2, v ∈ [0,∞), y, z ∈ (−∞,∞)}.
Because the PDE (7) consists of terms of order 1

ϵ ,
1√
ϵ
, 1,

√
δ, δ, and

√
δ
ϵ , we

define the differential operators L0, L1, L2, M1, M2, and M3 as follows:

L0 =(m− y)
∂

∂y
+ u2 ∂

2

∂y2
,

L1 =− u
√
2Λy(y, z)

∂

∂y
+ u

√
2ρ1yf(y, z)s1

∂2

∂s1∂y
,

L2 =
∂

∂t
+ rs1

∂

∂s1
+ rs2

∂

∂s2
+ rv

∂

∂v
+

1

2
f2(y, z)s21

∂2

∂s21
+

1

2
σ2
F s

2
2
∂2

∂s22
+

1

2
σ2
V v

2 ∂
2

∂v2
,

+ σF ρ12f(y, z)s1s2
∂2

∂s1∂s2
+ σV ρ13f(y, z)s1v

∂2

∂s1∂v
+ σFσV ρ23s2v

∂2

∂s2∂v
− r·,

M1 =− g(z)Λz(y, z)
∂

∂z
+ ρ1zf(y, z)g(z)s1

∂2

∂s1∂z
,

M2 = c(z)
∂

∂z
+
g2(z)

2

∂2

∂z2
, M3 =

√
2uρyzg(z)

∂2

∂y∂z
,

where L0 is related to the infinitesimal generator of the OU process Y , L1 consists
of the mixed partial derivatives s1 and y, L2 is considered as the (1+3) Black-
Scholes operator (with one time variable and three state variables) for vulnerable
foreign exchange options at the volatility level f(y, z), and M1 contains the
derivatives s1 and z, and M2 is related to the infinitesimal generator of Z, M3

consists of the derivatives y and z.
From the operator notations L0, L1, L2, M1, M2, and M3, the formulated

PDE (7) can be rewritten as{
Lϵ,δP ϵ,δ(t, s1, s2, v, y, z) = 0 in D,
P ϵ,δ(T, s1, s2, v, y, z) = h(s1, s2, v, y, z) on {t = T},

(8)

where Lϵ,δ := 1
ϵL0 +

1√
ϵ
L1 + L2 +

√
δM1 + δM2 +

√
δ
ϵM3 and D := [0, T ) ×

R≥0 × R≥0 × R≥0 × R × R. To solve the PDE (8), as in Fouque et al. [12], we

expand the price function P ϵ,δ with respect to the small parameter
√
δ. i.e.,

P ϵ,δ(t, s1, s2, v, y, z) =

∞∑
n=0

δn/2P ϵ
n(t, s1, s2, v, y, z). (9)
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for 0 < ϵ < δ <
√
ϵ ≪ 1. Substituting (9) into (8), the following relations is

obtained:(
1

ϵ
L0 +

1√
ϵ
L1 + L2

)
P ϵ
0 = 0,(

1

ϵ
L0 +

1√
ϵ
L1 + L2

)
P ϵ
1 +

(
M1 +

1√
ϵ
M3

)
P ϵ
0 = 0,(

1

ϵ
L0 +

1√
ϵ
L1 + L2

)
P ϵ
2 +M1P

ϵ
1 +M2P

ϵ
0 +

1√
ϵ
M3P

ϵ
1 = 0,

· · · .

(10)

Next, we also expand P ϵ
n in power of

√
ϵ as

P ϵ
n(t, s1, s2, v, y, z) =

∞∑
i=0

ϵi/2Pn,i(t, s1, s2, v, y, z) (11)

for any n = 0, 1, 2, · · · . Then, the equation
(

1
ϵL0 +

1√
ϵ
L1 + L2

)
P ϵ
0 = 0 implies

that P0,0 and P0,1 are independent of the volatility level y (detailed proof is
presented in [12] or [19]). Also, from the PDE (8) and expansion of P ϵ,δ, we
obtain the following sequential PDEs for P0,i (i ≥ 0).

⟨L2⟩P0,i(t, s1, s2, v, z) = 0 in D (12)

with the terminal conditions are P0,0(T, s1, s2, v, z) = h(s1, s2, v) and

P0,i(T, s1, s2, v, y, z) = 0

for any i ≥ 1. In (12), the expected operator ⟨L2⟩ is

⟨L2⟩ =
∂

∂t
+ rs1

∂

∂s1
+ rs2

∂

∂s2
+ rv

∂

∂v
+

1

2
σ̄2
1(z)s

2
1
∂2

∂s21
+

1

2
σ2
F s

2
2
∂2

∂s22
+

1

2
σ2
V v

2 ∂
2

∂v2

+ ρ̄12(z)σ̄1(z)σF s1s2
∂2

∂s1∂s2
+ ρ̄13(z)σ̄1(z)σV s1v

∂2

∂s1∂v
+ σFσV ρ23s2v

∂2

∂s2∂v
− r·,

σ̄1(z) =
√

⟨f2(y, z)⟩, ρ̄12(z) = ρ12
⟨f(y, z)⟩
σ̄1(z)

, ρ̄13(z) = ρ13
⟨f(y, z)⟩
σ̄1(z)

,

and ⟨·⟩ denotes the expectation under the invariant distribution of Y . That
is, ⟨w⟩ = 1

2πi

∫
R w(z) exp(−

z−m
2u2 )dz for any real function w. Also, we note that

the inequalities hold: ρ̄12(z) ≤ ρ12 and ρ̄13(z) ≤ ρ13 from the Cauchy-Schwartz
inequality.

As shown in (12), the leading order term P0,0(t, s1, s2, v, z) is a solution of
the PDE

⟨L2⟩P0,0(t, s1, s2, v, z) = 0

with the final condition P0,0(T, s1, s2, v, z) = h(s1, s2, v). The following theorem
represents the solution of the PDE:
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Theorem 3.1. From the PDE (12) for i = 0, the pricing formula for the
vulnerable foreign exchange option P0,0(t, s1, s2, v, z) is given by

P0,0(t, s1, s2, v, z) = s1Φ2(a1, a2, θ3)− s2Φ2(b1, b2, θ3)

+
1− α

D
v
(
s1e

(θ1+θ2)(T−t)Φ2(c1, c2,−θ3)− s2e
θ2(T−t)Φ2(d1, d2,−θ3)

)
,

(13)

where

a1 =
1

σ̂
√
T − t

ln
s1
s2

+
σ̂

2

√
T − t,

a2 =
1

σV
√
T − t

ln
v

D∗ +

(
σV
2

+
ρ̄13σ̄1σV + r

σV

)√
T − t,

b1 =
1

σ̂
√
T − t

ln
s1
s2

− σ̂

2

√
T − t,

b2 =
1

σV
√
T − t

ln
v

D∗ +

(
ρ23σFσV + r

σV
− σV

2

)√
T − t,

c1 =
1

σ̂
√
T − t

ln
s1
s2

+

(
ρ̄13σ̄1σV − ρ23σFσV

σ̂
+
σ̂

2

)√
T − t,

c2 = − 1

σV
√
T − t

ln
v

D∗ −
(
σV
2

+
ρ̄13σ̄1σV + r

σV

)√
T − t,

d1 =
1

σ̂
√
T − t

ln
s1
s2

+

(
ρ̄13σ̄1σV − ρ23σFσV

σ̂
− σ̂

2

)√
T − t,

d2 = − 1

σV
√
T − t

ln
v

D∗ −
(
ρ23σFσV + r

σV
+
σV
2

)√
T − t,

with σ̂ =
√
σ̄2
1 + σ2

F − 2ρ̄12σ̄1σF , θ1 = ρ̄13σ̄1σV − ρ23σFσV , θ2 = r + ρ23σFσV ,

and θ3 = θ1
σ̂σV

. and Φ2(n1, n2, ρ) =
1

2π
√

1−ρ2

∫ n1

−∞
∫ n2

−∞ e
− 1

2(1−ρ2)
(x2−2xyρ+y2)

dydx.

Proof. As in (12), the leading order price P0,0(t, s1, s2, v, z) satisfies the following
parabolic PDE:

⟨L2⟩P0,0(t, s1, s2, v, z) = 0,

P0,0(T, s1, s2, v, z) = h(s1, s2, v)

which is a fundamental result of Kim and Koo [24]. They obtained the closed-
form solution of the above vulnerable exchange options (PDE) using the Mar-
grabe formula [28] and double Mellin transforms. Thus, we omit the detailed
proof. □

Next, we derive explicit formulas for fast time-scale correction and slow time-
scale correction terms.

Theorem 3.2. The fast time scale correction price P ϵ
0,1 =

√
ϵP0,1 is given by

P ϵ
0,1 = −(T − t)AϵP0,0(t, s1, s2, v, z) (14)



The pricing of vulnerable foreign exchange options under a MSV 41

where Aϵ = V ϵ
2,1D

2
1+V

ϵ
2,2D1D2+V

ϵ
2,1D1Dv+D1

[
V ϵ
3,1D

2
1 + V ϵ

3,2D1D2 + V ϵ
3,3D1Dv

]
+2V ϵ

3,1D
2
1+V

ϵ
3,2D1D2+V

ϵ
3,3D1Dv. Here, the group parameters in the source term

Aϵ are defined as

V ϵ
2,1 = −u

√
ϵ√
2

〈
Λy(y, z)

∂ψ1

∂y
(y, z)

〉
, V ϵ

2,2 = −u
√
2ϵσF ρ12

〈
Λy(y, z)

∂ψ2

∂y
(y, z)

〉
,

V ϵ
2,3 = −u

√
2ϵσV ρ13

〈
Λy(y, z)

∂ψ2

∂y
(y, z)

〉
, V ϵ

3,1 =
u
√
ϵ√
2
ρ1y

〈
f(y, z)

∂ψ1

∂y
(y, z)

〉
,

V ϵ
3,2 = u

√
2ϵσF ρ12ρ1y

〈
f(y, z)

∂ψ2

∂y
(y, z)

〉
, V ϵ

3,3 = u
√
2ϵσV ρ13ρ1y

〈
f(y, z)

∂ψ2

∂y
(y, z)

〉
,

and Dn
1 = sn1

∂n

∂sn1
, Dn

2 = sn2
∂n

∂sn2
, and Dn

v = vn ∂n

∂vn . In Aϵ, functions ψ1 =

ψ1(y, z) and ψ2 = ψ2(y, z) are solutions of the Poisson equations L−1
0

(
f2 − ⟨f2⟩

)
and L−1

0 (f − ⟨f⟩), respectively.

Proof. From the first equation in (10), we have P0,2 = −L−1
0 (L2−⟨L2⟩)P0,0 and

⟨L2⟩P0,1 = −⟨L1P0,2⟩. (15)

By substituting the P0,2 into (15), we obtain the equation

⟨L2⟩P ϵ
0,1 = −u

√
2ϵ

[
1

2

〈
Λy(y, z)

∂ψ1

∂y
(y, z)

〉
s21
∂2P0,0

∂s21

+ σF ρ12

〈
Λy(y, z)

∂ψ2

∂y
(y, z)

〉
s1s2

∂2P0,0

∂s1∂s2
+ σV ρ13

〈
Λy(y, z)

∂ψ2

∂y
(y, z)

〉
s1v

∂2P0,0

∂s1∂v

]
+ u

√
2ϵρ1y

[〈
f(y, z)

∂ψ1

∂y
(y, z)

〉
s21
∂2P0,0

∂s21
+

1

2

〈
f(y, z)

∂ψ1

∂y
(y, z)

〉
s31
∂3P0,0

∂s31

+ σF ρ12

〈
f(y, z)

∂ψ2

∂y
(y, z)

〉
s1s2

∂2P0,0

∂s1∂s2
+ σF ρ12

〈
f(y, z)

∂ψ2

∂y
(y, z)

〉
s21s2

∂3P0,0

∂s21∂s2

+ σV ρ13

〈
f(y, z)

∂ψ2

∂y
(y, z)

〉
s1v

∂2P0,0

∂s1∂v
+ σV ρ13

〈
f(y, z)

∂ψ2

∂y
(y, z)

〉
s21v

∂3P0,0

∂s21∂v

]
:= AϵP0,0.

Next, applying the commuting property [22] to the above equation and since
P0,0 does not depend on y, the following relation can be obtained:
⟨L2⟩ (−(T − t)AϵP0,0) = AϵP0,0 − (T − t)Aϵ (⟨L2⟩P0,0) = AϵP0,0. Hence, one
can find the explicit form of P ϵ

0,1, which is the fast time-scale correction term we
wanted. □

Now, to derive the slow correction term P δ
1,0 =

√
δP1,0, we consider the second

equation of (10). As in [12], by expanding P ϵ
1 in power of the small parameter

√
ϵ

from (11), we know that P1,1 is independent of the fast mean-reverting diffusion
y.

Theorem 3.3. The fast slow-scale correction price P δ
1,0 =

√
δP1,0 is given by

P δ
1,0 =

1

2
(T − t)2AδP0,0(t, s1, s2, v, z) (16)
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where Aδ = V δ
0,1D

2
1+V

δ
0,2D1D2+V

δ
0,3D1Dv+D1

(
V δ
1,1D

2
1 + V δ

1,2D1D2 + V δ
1,3D1Dv

)
.

Here, the group parameters in a source term Aδ are defined as

V δ
0,1 = −

√
δg(z)⟨Λz(y, z)⟩

∂σ̄1
∂z

σ̄1,

V δ
0,2 = −

√
δg(z)⟨Λz(y, z)⟩

∂σ̄1
∂z

ρ̄12σF +
∂ρ̄12
∂z

σ̄1σF ,

V δ
0,3 = −

√
δg(z)⟨Λz(y, z)⟩

∂σ̄1
∂z

ρ̄13σV +
∂ρ̄13
∂z

σ̄1σV ,

V δ
1,1 =

√
δρ1zg(z)⟨f(y, z)⟩

∂σ̄1
∂z

σ̄1,

V δ
1,2 =

√
δρ1zg(z)⟨f(y, z)⟩

∂σ̄1
∂z

ρ̄12σF +
∂ρ̄12
∂z

σ̄1σF ,

V δ
1,3 =

√
δρ1zg(z)⟨f(y, z)⟩

∂σ̄1
∂z

ρ̄13σV +
∂ρ̄13
∂z

σ̄1σV .

Proof. From the second equation of the relations (10), we have ⟨L2⟩P δ
1,0 =

−
√
δ⟨M1⟩P0,0. To compute the right-hand side

√
δ⟨M1⟩P0,0, we consider the

following three terms:
∂P0,0

∂σ̄1
,

∂P0,0

∂ρ̄12
, and

∂P0,0

∂ρ̄13
. These can be obtained by differ-

entiating both sides of the equation ⟨L2⟩P0,0 = 0 with respect to σ̄1, ρ̄12, and

ρ̄13, respectively. Next, by using these Greeks,
√
δ⟨M1⟩P0,0 becomes

√
δ⟨M1⟩P0,0

=
√
δ⟨−g(z)Λz(y, z)

∂

∂z
+ g(z)ρ1zf(y, z)s1

∂2

∂s1∂z
⟩P0,0

=
√
δ

(
−g(z)⟨Λz(y, z)⟩ + g(z)ρ1z⟨f(y, z)⟩s1

∂

∂s1

)
∂P0,0

∂z
,

=
√
δ

(
−g(z)⟨Λz(y, z)⟩ + g(z)ρ1z⟨f(y, z)⟩s1

∂

∂s1

)(
∂σ̄1

∂z

∂P0,0

∂σ̄1

+
∂ρ̄12

∂z

∂P0,0

∂ρ̄12

+
∂ρ̄13

∂z

∂P0,0

∂ρ̄13

)
.

=
√
δ(T − t)

(
−g(z)⟨Λz(y, z)⟩ + g(z)ρ1z⟨f(y, z)⟩s1

∂

∂s1

)

×
[
∂σ̄1

∂z

(
σ̄1s

2
1

∂2P0,0

∂s21
+ ρ̄12σF s1s2

∂2P0,0

∂s1∂s2
+ ρ̄13σV s1v

∂2P0,0

∂s1∂v

)

+
∂ρ̄12

∂z
σ̄1σF s1s2

∂2P0,0

∂s1∂s2
+

∂ρ̄13

∂z
σ̄1σV s1v

∂2P0,0

∂s1∂v

]
.

Now, letting
√
δ⟨M1⟩ = (T − t)Aδ and using the commuting property,

⟨L2⟩P δ
1,0 =⟨L2⟩

(
1

2
(T − t)2AδP0,0

)
=− (T − t)AδP0,0 +

1

2
(T − t)2⟨L2⟩AδP0,0

=− (T − t)AδP0,0 +
1

2
(T − t)2Aδ⟨L2⟩P0,0.

=− (T − t)AδP0,0 = −
√
δ⟨M1⟩P0,0.

Thus, the slow scale correction price P δ
1,0 is given by P δ

1,0 = 1
2 (T − t)2AδP0,0.
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□

In Section 3, we obtain the leading-order price P0,0 (Theorem 3.1.), the fast
time scale correction term P ϵ

0,1 (Theorem 3.2.), and the slow time-scale correction

term P δ
1,0 (Theorem 3.3.). We refer to P ϵ

0,1 + P δ
1,0 a correction term and

P̃ ϵ,δ := P0,0 + P ϵ
0,1 + P δ

1,0 a corrected price. Now, we present the difference

between the true price P ϵ,δ and the corrected price P̃ ϵ,δ is less than a constant,
depending on the parameters ϵ and δ as follows:

Theorem 3.4. For any 0 < ϵ, δ ≤ 1, the accuracy of the price P ϵ,δ and the

approximation price P̃ ϵ,δ is∣∣∣P ϵ,δ(t, s1, s2, v, y, z)− P̃ ϵ,δ(t, s1, s2, v, z)
∣∣∣ = O(ϵ5/4− + ϵ| log ϵ|

√
δ + δ

√
ϵ+ δ3/2) (17)

where P̃ ϵ,δ(t, s1, s2, v, z) = P0,0 + P ϵ
0,1 + P δ

1,0, and the notation O(ϵ5/4−) =

O(ϵ1+q/4) for any q < 1.

Proof. This proof is similar to that of Theorem 2.5 in Fouque and Lorig [13].
However, as shown in (6), since the payoff function h is not continuously differ-
entiable at s1 = s2, we utilize the payoff smoothing method described in [12].
Also, it is easily seen that h ≤ (S1(T )−S2(T ))

+. Then, the following inequality
is satisfied:

(S(T )− 1)+
(
1{V (T )>D∗} +

1− α

D
V (T )1{V (T )≤D∗}

)
≤ (S(T )− 1)+ (18)

where the right hand side of (18) is a payoff function of the European call
option with K = 1. Thus, we can apply Theorem 2.5 in [13] to (18) and then,
the accuracy of the first-order approximation in (17) is established. □

4. Numerical Experiments and Implications

In this section, we investigate the price behavior of the vulnerable exchange
option under a multi-scale stochastic volatility (MSV) model with respect to
given model parameters. In particular, for the numerical experiments, we focus

on the corrected option price P̃ ϵ,δ(= P0,0 + P ϵ
0,1 + P δ

1,0) mentioned in Section 3.

First, to verify the accuracy of the corrected price P̃ ϵ,δ numerically, we cal-
culate the price of the exchange options with default risk under the MSV model
(1)–(4) using the Monte Carlo method. Considering that volatility follows a fast
mean-reverting Ornstein-Ulenbeck process as shown in Fouque et al. [9], we can
denote the volatility as an exponent function. Then, the stochastic dynamics for
assets S1, S2, the market value of option writer V , and mean-reverting processes
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Y and Z given in (1)–(4) can be expressed by

dS1(t) = rS1(t) dt+ eY (t)+Z(t)︸ ︷︷ ︸
=expOU

S1(t) dW
∗
1 (t),

dS2(t) = rS2(t) dt+ σFS2(t) dW
∗
2 (t),

dV (t) = rV (t) dt+ σV V (t) dW ∗
3 (t),

dY (t) =
1

ϵ
(my − Y (t))dt+

uy
√
2√
ϵ

dW ∗
y (t),

dZ(t) = δ(mz − Z(t))dt+
√
2δuzdW

∗
z (t),

(19)

respectively. In Table 1, we present the price difference between the Monte

Carlo price PMC and the corrected price P̃ ϵ,δ with respect to the fast mean
reversion rate ϵ and the slow-mean reversion rate δ mentioned in Section 2,
with the relationship between ϵ and δ satisfying 0 < ϵ < δ <

√
ϵ ≪ 1. The

parameters selected in the Monte Carlo simulation are α = 0.3, D = 100 = D∗,
r = 0.01, ρ12 = 0.196 = ρ13, ρ1y = −0.5 = ρ1z, ρ23 = 0.2, s1 = 1, s2 = 0.4,
σF = 0.2 = σV , T − t = 0.5, my = 0.2, mz = −2, uy = 0.2 = uz, y = 0, v = 120
and z = −2, and the number of the sample paths are 10, 000.

ϵ δ PMC P̃ ϵ,δ |PMC − P̃ ϵ,δ| RE (%)

10−3 10−2 0.607 262 0.602 361 0.004 901 0.807 065

10−4 10−3 0.606 042 0.602 284 0.003 758 0.620 089

10−5 10−4 0.602 956 0.602 259 0.000 697 0.115 597

10−6 10−5 0.602 032 0.602 251 0.000 219 0.036 377

Table 1. The error comparison between the Monte-Carlo price

for (19) (denoted by PMC) and the corrected formula (P̃ ϵ,δ =

P̃ ϵ,δ(t, s1, s2, v, z)) with respect to (ϵ, δ) pairs which comes from
Choi et al. [5]. All the computations were performed using
1.6GHz Intel Core i5 CPU and 8GB memory. The parameters
we choose are: α = 0.3, D = 100 = D∗, r = 0.01, ρ12 = 0.196 =
ρ13, ρ1y = −0.5 = ρ1z, ρ23 = 0.2, ρ2z = 0, s1 = 1, s2 = 0.4,
σF = 0.2 = σV , T−t = 0.5, my = 0.2, mz = −2, uy = 0.2 = uz,
y = 0, v = 120 and z = −2.

As shown in Table 1, if the parameters ϵ and δ go to zero, then the price

gap between P̃ ϵ,δ and PMC and the corresponding relative error converge to zero
quickly. Hence, one can observe that the option pricing formula is accurately de-
rived if both the mean-reverting parameters are sufficiently small. Additionally,
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we carry out a Monte Carlo simulation under a fixed ϵ = 10−6 and δ = 10−5 to
investigate the price difference and the corresponding relative error with regard
to the number of simulations. As shown in Table 2, if the number of simula-

tions increases, then the price difference |PMC − P̃ ϵ,δ| and the corresponding
relative error are closer to zero. Therefore, from both Tables, we observe that

the corrected price P̃ ϵ,δ presented in Section 3 becomes an accurate solution for
vulnerable exchange options with the MSV.

# of simulations PMC P̃ ϵ=10−6, δ=10−5 |PMC − P̃ ϵ,δ| RE (%)

10,000 0.602 032 0.602 251 0.000 219 0.036 377

20,000 0.602 369 0.602 251 0.000 118 0.019 512

30,000 0.602 191 0.602 251 0.000 060 0.009 954

50,000 0.602 228 0.602 251 0.000 023 0.003 873

70,000 0.602 230 0.602 251 0.000 021 0.003 518

Table 2. The error comparison between the Monte-Carlo price

for (19) (denoted by PMC) and the corrected formula (P̃ ϵ,δ =

P̃ ϵ,δ(t, s1, s2, v, z)) with respect to the number of paths and the
fixed ϵ(= 10−6) and δ(= 10−5). All the computations were
performed using 1.6GHz Intel Core i5 CPU and 8GB memory.
Adopted parameters are: α = 0.3, D = 100 = D∗, r = 0.01,
ρ12 = 0.196 = ρ13, ρ1y = −0.5 = ρ1z, ρ23 = 0.2, ρ2z = 0,
s1 = 1, s2 = 0.4, σF = 0.2 = σV , T − t = 0.5, my = 0.2,
mz = −2, uy = 0.2 = uz, y = 0, v = 120, ϵ = 10−6, δ = 10−5

and z = −2.

Figure 1(a) plots the price changes of the Black-Scholes price P0,0 with respect
to the asset S1 and the market price of option writer V . Also, Figures 1(b) and
1(c) show the change in the correction term P ϵ

0,1 + P δ
1,0 with respect to the

domestic currency S1, foreign currency S2, and the price of the option’s issuer,
V . As shown in Figures 1(b) and 1(c), the values of the correction term tend to
be negative, exhibiting a hump phenomenon as the market value of the option
writer is near the critical default level D = D∗ = 100. This implies that the
price of the vulnerable exchange options under stochastic volatility tends to be
undervalued compared to the Black-Scholes price P0,0 described by (13), and the
pricing impact of the correction term on the option prices is most sensitive when
the market value of the option issuer gets closer to the critical default value.
Additionally, one can observe that the more S1 or S2 increases, the greater the
pricing sensitivity of the correction term. This means that as the price of the
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domestic currency or the value of the foreign currency increases, the stochastic
volatility has a more significant influence on the option price.

(a) s2 = 100 (b) s2 = 100 (c) s1 = 150

Figure 1. Surfaces of leading order term P0,0 and correction
term P ϵ

0,1 +P δ
1,0. Selected parameters: α = 0.3, D = 100 = D∗,

r = 0.01, ρ12 = 0.196 = ρ13, ρ1y = −0.5 = ρ1z, ρ23 = 0.2,
ρ2z = 0, σF = 0.1 = σV , T − t = 1, my = 0.01, mz = −2,

uy =
√
2 = uz, y = 0, v = 120, ϵ = 10−6, δ = 10−5 and z = −2.
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Figure 2. The impact of the critical level D∗ on the correction
term. Fixed parameters: α = 0.3, r = 0.01, ρ12 = 0.196 = ρ13,
ρ1y = −0.5 = ρ1z, ρ23 = 0.2, ρ2z = 0, s1 = 1, s2 = 1, σF =
0.2 = σV , T − t = 0.5, my = 0.2, mz = −2, uy = 0.2 = uz,
y = 0, ϵ = 10−6, δ = 10−5 and z = −2.

Figure 2 shows the price behavior of the correction term P ϵ
0,1 + P δ

1,0 with
respect to the market value V . For each D∗, we note that the value of the
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correction term increases dramatically against the market value V , but it grad-
ually decreases again as V reaches the critical default level D∗, which ultimately
converges to a certain constant level. Thus, we can observe that the correction
term has a hump curve around the value of D∗, regardless of the market value of
the option writer. Also, as V decreases, the price impact of the correction term
becomes larger, but when V is larger, the price influence of the correction term
is less significant. It can be observed that the more likely it is to have default
risk, the more sensitive the effect of stochastic volatility on the option price.
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(a) ϵ = 10−6
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(b) δ = 10−4

Figure 3. The impact of the fast-mean-reverting factor ϵ and
slow-reverting factor δ on the correction term. Selected param-
eters: α = 0.3, r = 0.01, ρ12 = 0.196 = ρ13, ρ1y = −0.5 = ρ1z,
ρ23 = 0.2, ρ2z = 0, s2 = 0.7, σF = 0.2 = σV , T − t = 0.5,
my = 0.2, mz = −2, uy = 0.5 = uz, y = 0, ϵ = 10−6, δ = 10−5,
v = 100, D = 100 = D∗, and z = −2.

Figure 3 displays the structure of the option price correction term depending
on parameters ϵ and δ corresponding to the term of the fast factor and the term
of the slow factor, respectively. We find that the value of the correction term is
more sensitive to the small parameter δ than the small parameter ϵ. This implies
that the slow scale correction has a more significant impact than the fast scale
correction on the option price in terms of the underlying asset value.

5. Conclusion

This study is based on the model dynamics of the underlying assets (domes-
tic currency, foreign currency, and market price of the option’s issuer), and is
driven by a perturbative form of multi-scale stochastic volatility with a fast mean
reverting process and a slow varying process. The study approximates closed-
form solutions, which consist of one leading order price and two correction order
prices, derived for the vulnerable exchange option prices. By numerical compu-
tation and a comparison of the approximated option pricing formula, we observe
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that the corrections of the stochastic volatility have a significant effect on the
option value, showing the hump shapes and the highest sensitivity, as the market
value of the option writer is close to the critical default level. Furthermore, in
the multi-scale stochastic volatility model, we observe that: a slow scale mean-
reverting factor on stochastic volatility term has a more significant influence on
the option price than a fast scale mean-reverting factor. In other words, the
role of the slow factor of the multi-scale stochastic volatility is very crucial for
option pricing along with the cases of stochastic volatility of Chen and Zhu [4]
and Yoon [31], and the hybrid stochastic and the local volatility model of Kim
et al. [25]. Finally, our study focuses on the necessity of studying a multi-scale
SV model for the pricing of the option.
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