DOI QR코드

DOI QR Code

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Received : 2021.10.09
  • Accepted : 2022.12.16
  • Published : 2023.01.25

Abstract

This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

Keywords

Acknowledgement

This research work is supported by the Fundamental Research Funds for the Central Universities (Grant No. FRFCU5710094620, Grant No. HIT.BRET.2021006).

References

  1. An, H., Wu, Q., Wang, G., Guo, Z. and Wang, C. (2020), "Simplified longitudinal control of air-breathing hypersonic vehicles with hybrid actuators", Aerosp. Sci. Technol., 104, 105936. https://doi.org/10.1016/j.ast.2020.105936.
  2. Baumann, E., Pahle, J.W., Davis, M.C. and White, J.T. (2013), "X-43A flush airdata sensing system flight-test results", J. Spacecr. Rocket., 47(1), 48-61. https://doi.org/10.2514/1.41163.
  3. Bolender, M.A. (2009), "An overview on dynamics and controls modelling of hypersonic vehicles", 2009 American Control Conference, St. Louis, MO, June.
  4. Bolender, M.A. and Doman, D.B. (2005), "A non-linear model for the longitudinal dynamics of a hypersonic air-breathig vehicle", AIAA Guidance, Navigation and Control Conference and Exhibit, San Francisco, California, August.
  5. Bolender, M.A. and Doman, D.B. (2007), "Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle", J. Spacecr. Rocket., 44, 374-387. https://doi.org/10.2514/1.23370.
  6. Burcham, Jr, F., Ray, R., Conners, T. and Walsh, K. (1998), "Propulsion flight research at NASA Dryden from 1967 to 1997", Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, July.
  7. Cheng, X., Wang, P. and Tang, G. (2019), "Fuzzy-reconstruction-based robust tracking control of an air-breathing hypersonic vehicle", Aerosp. Sci. Technol., 86, 694-703. https://doi.org/10.1016/j.ast.2019.01.041.
  8. Cui, T. (2014), "Simplified procedure for controlling pressure distribution of a scramjet combustor", Chin. J. Aeronaut., 27(5), 1137-1141. https://doi.org/10.1016/j.cja.2014.08.015.
  9. Doyle, J.C., Glover, K., Khargonekar, P.P. and Francis, B.A. (1989), "State-space solutions to standard H2 and H∞ control problems", IEEE Trans. Autom. Control, 34, 831-847. https://doi.org/10.1109/9.29425.
  10. Echols, J.A., Puttannaiah, K., Mondal, K. and Rodriguez, A.A. (2013), "Fundamental control system design issues for scramjet-powered hypersonic vehicles", AIAA Guidance, Navigation and Control Conference, Kissimmee, Florida, USA.
  11. Fiorentini, L., Serrani, A., Bolender, M.A. and Doman, D.B. (2009), "Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles", J. Guid. Control Dyn., 32, 401-416. https://doi.org/10.2514/1.39210.
  12. Gahinet, P. and Apkarian, P. (1994), "A linear matrix inequality approach to h control", Int. J. Robust Nonlin. Control, 4(4), 421-448. https://doi.org/10.1002/rnc.4590040403.
  13. Groves, K.P., Serrani, A., Yurkovich, S., Bolender, M.A. and Doman, D.B. (2006), "Anti-windup control for an air-breathing hypersonic vehicle model", AIAA Guidance, Navigation and Control Conference and Exhibit, Keystone, Colorado, August.
  14. Huo, Y., Mirmirani, M., Ioannou, P. and Kuipers, M. (2006), "Altitude and velocity tracking control for an air-breathing hypersonic cruise vehicle", AIAA Guidance, Navigation and Control Conference and Exhibit, Keystone, Colorado, USA.
  15. Lee, Y.J., Kang, S.H. and Yang, S.S. (2015), "A study on the hypersonic air-breathing engine ground test facility composition and characteristics", J. Kor. Soc. Propul. Eng., 19(6), 81-90. https://doi.org/10.6108/KSPE.2015.19.6.081.
  16. Li, J., Li, D., Wu, G. and Liu, K. (2021). Flight-Propulsion Integration Dynamic Analysis and Adaptive Control of the Hypersonic Vehicle at Wide-Range Mach Numbers. IEEE Access, 10, 6954-6965. https://doi.org/10.1109/ACCESS.2021.313661.
  17. Li, N., Chang, J., Xu, K., Yu, D. and Song, Y. (2019), "Closed-loop control of shock train in inlet-isolator with incident shocks", Exp. Therm. Fluid Sci., 103, 355-363. https://doi.org/10.1016/j.expthermflusci.2019.01.033.
  18. Lv, C., Chang, J., Dong, Y., Ma, J. and Xu, C. (2020), "Modeling and coupling characteristics for an airframe-propulsion-integrated hypersonic vehicle", Adv. Aircraft Spacecraft Sci., 7(6), 553-570. https://doi.org/10.12989/aas.2020.7.6.553. 
  19. Ma, J., Chang, J., Zhang, J, Bao, W. and Yu, D. (2018), "Control-oriented modeling and real-time simulation method for a dual-mode scramjet combustor", Acta Astronaut., 153, 82-94. https://doi.org/10.1016/j.actaastro.2018.10.002.
  20. Ma, J., Chang, J., Zhang, J., Bao, W. and Yu, D. (2019), "Control-oriented unsteady one-dimensional model for a hydrocarbon regeneratively-cooled scramjet engine", Aerosp. Sci. Technol., 85, 158-170. https://doi.org/10.1016/j.ast.2018.12.012.
  21. Mooij, E. (2001), "Numerical investigation of model reference adaptive control for hypersonic aircraft", J. Guid. Control Dyn., 24, 315-323. https://doi.org/10.2514/2.4714.
  22. Mu, C., Ni, Z., Sun, C. and He, H. (2017), "Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming", IEEE Trans. Neur. Netw. Learn. Syst., 28(3), 584-598. https://doi.org/10.1109/TNNLS.2016.2516948.
  23. Parker, J.T., Serrani, A., Yurkovich, S., Bolender, M.A. and Doman, D.B. (2007), "Control-oriented modeling of an air-breathing hypersonic vehicle", J. Guid. Control Dyn., 30(3), 856-869. https://doi.org/10.2514/1.27830.
  24. Rodriguez, A., Dickeson, J., Cifdaloz, O., Kelkar, A., Vogel, J., Soloway, D., McCullen, R., Benavides, J. and Sridharan, S. (2008), "Modeling and control of scramjet-powered hypersonic vehicles: Challenges, trends, and tradeoffs", AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, August.
  25. Sigthorsson, D.O. (2008), "Control-oriented modeling and output feedback control of hypersonic air-breathing vehicles", Ph.D. Dissertation, The Ohio State University, Columbus, U.S.A.
  26. Wang, F., Guo, Y., Wang, K., Zhang, Z., Hua, C.C. and Zong, Q. (2019), "Disturbance observer based robust backstepping control design of flexible air-breathing hypersonic vehicle", IET Control Theor. Appl., 13(4), 572-583. http://doi.org/10.1049/iet-cta.2018.5482.
  27. Yao, Z.H., Bao, W., Chang, J.T., Yu, D.R. and Tang, J.F. (2010), "Modelling for couplings of an airframe-propulsion integrated hypersonic vehicle with engine safety boundaries", Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 224(1), 43-55. https://doi.org/10.1243/09544100JAERO618.
  28. Yu, H., Guo, Y., Yan, X. and Wang, J. (2022), "Flight/propulsion integrated control of over-under TBCC engine based on GA-LQR method", Aerosp., 9(10), 621. https://doi.org/10.3390/aerospace9100621.
  29. Zhang, J., Kang, W., Li, A. and Yang, L. (2016), "Integrated flight/propulsion optimal control for DPC aircraft based on the GA-RPS algorithm", Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 230(1), 157-171. https://doi.org/10.1177/0954410015588933.
  30. Zheng, J., Chang, J., Ma, J. and Yu, D. (2019), "Modeling and analysis for integrated airframe/propulsion control of vehicles during mode transition of over-under Turbine-Based-Combined-Cycle engines", Aerosp. Sci. Technol., 95, 105462. https://doi.org/10.1016/j.ast.2019.105462.