DOI QR코드

DOI QR Code

SOME FIXED POINT THEOREMS ON CONE S-METRIC SPACES USING IMPLICIT CONTRACTIVE CONDITIONS

  • Seung Hyun, Kim (Department of Mathematics, Kyungsung University) ;
  • Mee Kwang, Kang (Department of Mathematics, Dongeui University)
  • 투고 : 2022.09.19
  • 심사 : 2022.12.11
  • 발행 : 2023.01.31

초록

In this paper, we introduce two kinds of implicit conditions and establish some fixed point theorems in cone S-metric spaces, which generalize the several existing results.

키워드

참고문헌

  1. B.C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), no. 4, 329-336.
  2. D. Dhamodharan and R. Krishnakumar, Cone S-metric space and fixed point theorems of contractive mappings, Annals of Pure Appl. Math. 14 (2017), no. 2, 237-243. https://doi.org/10.22457/apam.v14n2a5
  3. L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468-1476. https://doi.org/10.1016/j.jmaa.2005.03.087
  4. Z. Mustafa and B. I. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
  5. V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Ceret. St. Ser. Mat. Univ. Bacau 7 (1997), 127-133.
  6. V. Popa, On some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32 (1999), no. 1, 157-163. https://doi.org/10.1515/dema-1999-0117
  7. G. S. Saluja, Fixed point theorems on cone S-metric spaces using implicit relation, CUBO 22 (2020), no. 2, 273-289. https://doi.org/10.4067/s0719-06462020000200273
  8. G. S. Saluja, Some fixed point theorems under implicit relation on S-metric spaces, Bull. Int. Math. Virtual Inst. 11 (2021), no. 2, 327-340.
  9. S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D*-metric spaces, Fixed Point Theory Appl. (2007), Article ID 027906.
  10. S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (2012), no. 3, 258-266.
  11. S. Sedghi,and N.V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (2014), no. 1, 113-124.