East Asian Math. J.
Vol. 39 (2023), No. 1, pp. 001-010
YNMS
http://dx.doi.org/10.7858/eamj.2023.001

SOME FIXED POINT THEOREMS ON CONE S-METRIC SPACES USING IMPLICIT CONTRACTIVE CONDITIONS

Seung Hyun Kim and Mee Kwang Kang*

Abstract

In this paper, we introduce two kinds of implicit conditions and establish some fixed point theorems in cone S-metric spaces, which generalize the several existing results.

1. Introduction and Preliminaries

Banach contraction mapping principle in a metric space is one of the most useful result in nonlinear analysis. Many researchers have generalized and improved this result in two directions; one is to generalize its underlying (metric) space and the other is to generalize the contractive condition in various ways(see, for example [1, 3, 4, 7, 9, 10])

In 2007, Huang and Zhang [3] introduced the concept of cone metric, as a generalization of a usual metric, and proved some fixed point theorems for contractive mappings in normal cone metric spaces. A few years later, Sedghi et al. [10] introduced the concept of S-metric, a generalization of G-metric and D^{*} metric, and obtained fixed point theorems in complete S-metric spaces under explicit contractive conditions. In 2017, Dhamodharan and Krishnakumar [2] introduced the concept of cone S-metric and obtained some fixed point theorems using a few contractive conditions in cone S-metric spaces.

On the other hand, since Popa $[5,6]$ employed an implicit contractive type condition instead of the usual explicit contractive conditions to obtain fixed point theorems, this direction of research produced a consistent literature on fixed point and common fixed point therorems in various spaces.

Recently, Saluja [7] obtained fixed point theorems in the setting of complete cone S-metric spaces under implicit contractive conditions which used in [11].

Motivated and inspired by the previous works, in this paper, we introduce some implicit conditions and establish some fixed point theorems in cone S metric spaces, which generalize the several existing results.

First of all, we recall some basic notions of a cone and a partial ordering.

[^0]A nonempty subset P of a real Banach space E is called a cone if and only if (P1) P is closed, $P \neq\{\mathbf{0}\}$;
(P2) $a, b \in \mathbb{R}$ with $a, b \geq 0, x, y \in P \Rightarrow a x+b y \in P$;
(P3) $x \in P$ and $-x \in P \Rightarrow x=\mathbf{0}$.
For a given cone $P \subset E$, we define a partial ordering ' \preceq ' with respect to P as
follows; for $x, y \in E, x \preceq y$ if and only if $y-x \in P$. We shall note $x \ll y$ if and only if $y-x \in \operatorname{int} P$, where $\operatorname{int} P$ denotes the interior of P. The cone P is called normal if there is a positive real number K such that $\mathbf{0} \preceq x \preceq y$ implies $\|x\| \leq K\|y\|$.

Definition 1. [2] Let X be a nonempty set. Suppose that a mapping S : $X \times X \times X \rightarrow P$ satisfies the following;
(S1) $S(x, y, z)=\mathbf{0}$ if and only if $x=y=z$;
(S2) $S(x, y, z) \preceq S(x, x, a)+S(y, y, a)+S(z, z, a)$ for all $x, y, z \in X$.
Then S is called a cone S-metric on M, and the set X with a cone S-metric S is called a cone S-metric space, denoted by (X, S).

Definition 2. Let (X, S) be a cone S-metric space. A sequence $\left\{x_{n}\right\}$ in X called a Cauchy sequence if for any $\varepsilon \succeq \mathbf{0}$, there exists $N \in \mathbb{N}$ such that $S\left(x_{n}, x_{m}, x_{l}\right) \preceq \varepsilon$ for each $n, m, l \geq N$.

Definition 3. The cone S-metric space (X, S) is said to be complete if every Cauchy sequence is convergent.

Following lemma is cone S-metric version of Lemma 2.5 in a S-metric spaces [10].

Lemma 1.1. Let (X, S) be a cone S-metric space. Then, $S(x, x, z)=S(z, z, x)$ for all $x, z \in X$.

Proof. From (S2), we have

$$
S(x, x, z) \preceq S(x, x, x)+S(x, x, x)+S(z, z, x)=S(z, z, x)
$$

and similarly

$$
S(z, z, x) \preceq S(z, z, z)+S(z, z, z)+S(x, x, z)=S(x, x, z) .
$$

By the property (P3) of a cone, we have $S(x, x, z)=S(z, z, x)$.

2. Main Results

First of all, we introduce Implicit Relation 1 to obtain a fixed point theorem on cone S-metric spaces.

Implicit Relation 1. Let \mathbb{F} be the set of all continuous functions F : $P^{6} \rightarrow P$ consider the following properties;
$(F 1)$ there exists $k \in[0,1)$ such that for all $x, y, z \in P, y \preceq F(x, x, y, z, \mathbf{0}, \mathbf{0})$
with $z \preceq 2 x+y$ implies that $y \preceq k x$,
(F2) for all $y \in P, y \preceq F(y, \mathbf{0}, \mathbf{0}, y, y, y)$ implies that $y=\mathbf{0}$,
(F3) $x_{i} \preceq y_{i}+z_{i}$ for all $x_{i}, y_{i}, z_{i} \in P(i=1,2, \cdots, 6)$,

$$
F\left(x_{1}, x_{2}, \cdots, x_{6}\right) \preceq F\left(y_{1}, y_{2}, \cdots, y_{6}\right)+F\left(z_{1}, z_{2}, \cdots z_{6}\right) .
$$

Actually, for all $y \in P, F(\mathbf{0}, \mathbf{0}, 2 y, y, \mathbf{0}, y) \preceq k y$ for some $k \in[0,1)$.

Theorem 2.1. Let X be a nonempty set with a complete cone S-metric S : $X \times X \times X \rightarrow P, P$ a normal cone with normal constant K and $T: X \rightarrow X$ a mapping satisfies

$$
\begin{align*}
S(T x, T x, T y) \preceq & F(S(x, x, y), S(x, x, T x), S(y, y, T y), S(x, x, T y), S(y, y, T x), \\
& S(T x, T x, y)) \tag{1}
\end{align*}
$$

for all $x, y \in X$ and some $F \in \mathbb{F}$. Then, we have the followings;
(a) If F satisfies ($F 1$), then T has a fixed point. Moreover, for $x_{0} \in X$ and the fixed point x,

$$
S\left(T x_{n}, T x_{n}, x\right) \preceq \frac{2 k^{n}}{1-k} S\left(x_{0}, x_{0}, T x_{0}\right) .
$$

(b) If F satisfies (F2), then T has a unique fixed point.
(c) If F satisfies (F3) and T has a fixed point x, then T is continuous at x.

Proof. (a) For $x_{0} \in X$ and $n \in \mathbb{N}$, put $x_{n+1}=T x_{n}$. From (1), we have

$$
\begin{aligned}
& S\left(x_{n+1}, x_{n+1}, x_{n+2}\right)=S\left(T x_{n}, T x_{n}, T x_{n+1}\right) \\
& \preceq \quad F\left(S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n}, x_{n}, T x_{n}\right), S\left(x_{n+1}, x_{n+1}, T x_{n+1}\right),\right. \\
&=\left.S\left(x_{n}, x_{n}, T x_{n+1}\right), S\left(x_{n+1}, x_{n+1}, T x_{n}\right), S\left(T x_{n}, T x_{n}, x_{n+1}\right)\right) \\
&= F\left(S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n+1}, x_{n+1}, x_{n+2}\right),\right. \\
&\left.S\left(x_{n}, x_{n}, x_{n+2}\right), S\left(x_{n+1}, x_{n+1}, x_{n+1}\right), S\left(x_{n+1}, x_{n+1}, x_{n+1}\right)\right) \\
&= F\left(S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n+1}, x_{n+1}, x_{n+2}\right),\right. \\
&\left.S\left(x_{n}, x_{n}, x_{n+2}\right), \mathbf{0} \mathbf{0}\right) .
\end{aligned}
$$

From the condition ($S 2$) and Lemma 1.1, we get

$$
\begin{aligned}
S\left(x_{n}, x_{n}, x_{n+2}\right) & \preceq S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{n+2}, x_{n+2}, x_{n+1}\right) \\
& =2 S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{n+1}, x_{n+1}, x_{n+2}\right) .
\end{aligned}
$$

Since $S\left(x_{n}, x_{n}, x_{n+2}\right), S\left(x_{n}, x_{n}, x_{n+1}\right)$ and $S\left(x_{n+1}, x_{n+1}, x_{n+2}\right)$ satisfy the hypothesis of $(F 1)$, there exists $k \in[0,1)$ such that

$$
S\left(x_{n+1}, x_{n+1}, x_{n+2}\right) \preceq k S\left(x_{n}, x_{n}, x_{n+1}\right) .
$$

Applying this method sequentially, we can obtain

$$
k S\left(x_{n}, x_{n}, x_{n+1}\right) \preceq k^{2} S\left(x_{n-1}, x_{n-1}, x_{n}\right) \preceq \cdots \preceq k^{n+1} S\left(x_{0}, x_{0}, x_{1}\right) .
$$

From the above inequality, we have

$$
\begin{align*}
S\left(x_{n}, x_{n}, x_{m}\right) & \preceq 2 S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{m}, x_{m}, x_{n+1}\right) \\
& \preceq 2 S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{n+1}, x_{m}, x_{m}\right) \\
& \preceq 2 k^{n} S\left(x_{0}, x_{0}, x_{1}\right)+2 S\left(x_{n+1}, x_{n+1}, x_{n+2}\right)+S\left(x_{m}, x_{m}, x_{n+2}\right) \\
& \preceq 2 k^{n} S\left(x_{0}, x_{0}, x_{1}\right)+2 k^{n+1} S\left(x_{0}, x_{0}, x_{1}\right)+S\left(x_{n+2}, x_{n+2}, x_{m}\right) \\
& \preceq \cdots \\
& \preceq 2\left(k^{n}+k^{n+1}+\cdots+k^{m-1}\right) S\left(x_{0}, x_{0}, x_{1}\right) \\
& =2 \frac{k^{n}\left(1-k^{m-n}\right)}{1-k} S\left(x_{0}, x_{0}, x_{1}\right) \\
& \preceq 2 \frac{k^{n}}{1-k} S\left(x_{0}, x_{0}, x_{1}\right) \text { for } n<m \tag{2}
\end{align*}
$$

which implies that

$$
\left\|S\left(x_{n}, x_{n}, x_{m}\right)\right\| \leq 2 \frac{k^{n}}{1-k} K\left\|S\left(x_{0}, x_{0}, x_{1}\right)\right\| \rightarrow 0 \text { as } n, m \rightarrow \infty
$$

Therefore, we have $S\left(x_{n}, x_{n}, x_{m}\right) \rightarrow \mathbf{0}$ as $n, m \rightarrow \infty$ and thus $\left\{x_{n}\right\}$ is a Cauchy sequence. By the completeness of $X, \lim _{n \rightarrow \infty} x_{n}=x$ for some $x \in X$. From (2), we get

$$
S\left(x_{n+1}, x_{n+1}, x_{m}\right) \preceq 2 \frac{k^{n+1}}{1-k} S\left(x_{0}, x_{0}, x_{1}\right) .
$$

By taking the limits as $m \rightarrow \infty$ in ths above inequality, we have

$$
S\left(x_{n+1}, x_{n+1}, x\right) \preceq 2 \frac{k^{n+1}}{1-k} S\left(x_{0}, x_{0}, x_{1}\right),
$$

which implies that

$$
S\left(T x_{n}, T x_{n}, x\right) \preceq 2 \frac{k^{n+1}}{1-k} S\left(x_{0}, x_{0}, x_{1}\right)
$$

Now, we show that x is a fixed point of T. From (1) and Lemma 1.1, we have

$$
\begin{aligned}
& S\left(x_{n+1}, x_{n+1}, T x\right)=S\left(T x_{n}, T x_{n}, T x\right) \\
\preceq \quad & F\left(S\left(x_{n}, x_{n}, x\right), S\left(x_{n}, x_{n}, T x_{n}\right), S(x, x, T x),\right. \\
& \left.S\left(x_{n}, x_{n}, T x\right), S\left(x, x, T x_{n}\right), S\left(T x_{n}, T x_{n}, x\right)\right) \\
= & F\left(S\left(x_{n}, x_{n}, x\right), S\left(x_{n}, x_{n}, x_{n+1}\right), S(x, x, T x),\right. \\
& \left.S\left(x_{n}, x_{n}, T x\right), S\left(x, x, x_{n+1}\right), S\left(x_{n+1}, x_{n+1}, x\right)\right) \\
= & F\left(S\left(x_{n}, x_{n}, x\right), S\left(x_{n}, x_{n}, x_{n+1}\right), S(x, x, T x),\right. \\
& \left.S\left(x_{n}, x_{n}, T x\right), S\left(x, x, x_{n+1}\right), S\left(x, x, x_{n+1}\right)\right) .
\end{aligned}
$$

Since F is continuous, taking the limits as $n \rightarrow \infty$ in the above inequality, we have

$$
S(x, x, T x) \preceq F(\overline{0}, \overline{0}, S(x, x, T x), S(x, x, T x), \mathbf{0}, \mathbf{0})
$$

From the above inequality and $S(x, x, T x) \preceq 2 \cdot \mathbf{0}+S(x, x, T x), F$ satisfies the condition (F1) and thus, we obtain $S(x, x, T x) \preceq k \cdot \mathbf{0}=\mathbf{0}$. By ($S 1$), we have $x=T x$. Thus, x is a fixed point of T.
(b) Suppose that T has two distinct fixed points y and z in X. From (1) and

Lemma 1.1, we obtain

$$
\begin{aligned}
& S(y, y, z)=S(T y, T y, T z) \\
\preceq \quad & F(S(y, y, z), S(y, y, T y), S(z, z, T z) \\
& S(y, y, T z), S(z, z, T y), S(T y, T y, T z)) \\
= & F(S(y, y, z), S(y, y, y), S(z, z, z) \\
& S(y, y, z), S(z, z, y), S(y, y, z)) \\
= & F(S(y, y, z), \mathbf{0}, \mathbf{0}, S(y, y, z), S(y, y, z), S(y, y, z)) .
\end{aligned}
$$

Since F satisfies the condition $(F 2), S(y, y, z)=\mathbf{0}$ and thus we have $y=z$. Therefore, T has a unique fixed point.
(c) Let x be a fixed point of T and $\left\{x_{n}\right\}$ be a convergent sequence in X with $x_{n} \rightarrow x$ as $n \rightarrow \infty$. From (1) and Lemma 1.1, we obtain

$$
\begin{align*}
& S\left(x, x, T x_{n}\right)=S\left(T x, T x, T x_{n}\right) \\
\preceq & F\left(S\left(x, x, x_{n}\right), S(x, x, T x), S\left(x_{n}, x_{n}, T x_{n}\right),\right. \\
& \left.S\left(x, x, T x_{n}\right), S\left(x_{n}, x_{n}, T x\right), S\left(T x, T x, T x_{n}\right)\right) \\
= & F\left(S\left(x, x, x_{n}\right), S(x, x, x), S\left(x_{n}, x_{n}, T x_{n}\right),\right. \\
& \left.S\left(x, x, T x_{n}\right), S\left(x_{n}, x_{n}, x\right), S\left(x, x, T x_{n}\right)\right) \\
= & F\left(S\left(x, x, x_{n}\right), \overline{0}, S\left(T x_{n}, T x_{n}, x_{n}\right),\right. \\
& \left.S\left(T x_{n}, T x_{n}, x\right), S\left(x, x, x_{n}\right), S\left(T x_{n}, T x_{n}, x\right)\right) . \tag{3}
\end{align*}
$$

From ($S 2$) and Lemma 1.1, we have

$$
\begin{align*}
S\left(T x_{n}, T x_{n}, x_{n}\right) & \preceq 2 S\left(T x_{n}, T x_{n}, x\right)+S\left(x_{n}, x_{n}, x\right) \\
& =2 S\left(T x_{n}, T x_{n}, x\right)+S\left(x, x, x_{n}\right) . \tag{4}
\end{align*}
$$

Since F satisfies the condition (F3), from (3) and (4), we have

$$
\begin{aligned}
S\left(x, x, T x_{n}\right) \preceq & F\left(S\left(x, x, x_{n}\right), \mathbf{0}, \mathbf{0}, \mathbf{0}, S\left(x, x, x_{n}\right), \mathbf{0}\right) \\
& +F\left(\mathbf{0}, \mathbf{0}, 2 S\left(T x_{n}, T x_{n}, x\right), S\left(T x_{n}, T x_{n}, x\right), \mathbf{0}, S\left(T x_{n}, T x_{n}, x\right)\right) .
\end{aligned}
$$

From the condition (F3), we obtain

$$
\begin{aligned}
S\left(x, x, T x_{n}\right) \preceq & F\left(S\left(x, x, x_{n}\right), \mathbf{0}, \mathbf{0}, \mathbf{0}, S\left(x, x, x_{n}\right), S\left(T x_{n}, T x_{n}, x\right)\right) \\
& +k S\left(T x_{n}, T x_{n}, x\right) \\
\preceq & F\left(S\left(x, x, x_{n}\right), \mathbf{0}, \mathbf{0}, \mathbf{0}, S\left(x, x, x_{n}\right), S\left(T x_{n}, T x_{n}, x\right)\right) \\
& +k S\left(x, x, T x_{n}\right) \text { for some } k \in[0,1),
\end{aligned}
$$

which implies that

$$
S\left(x, x, T x_{n}\right) \preceq \frac{1}{1-k} F\left(S\left(x, x, x_{n}\right), \mathbf{0}, \mathbf{0}, \mathbf{0}, S\left(x, x, x_{n}\right), \mathbf{0}\right) \rightarrow \mathbf{0} \text { as } n \rightarrow \infty
$$

This shows that T is continuous at x.
If we put $F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):=\phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$, then Theorem 2.1 can be modified as follows, which is the fixed point theorem in [7].

Theorem 2.2. [7] Let T be a self-map on a complete cone S-metric space (X, S), P a normal cone with normal constant K and
$S(T x, T x, T y) \preceq \phi(S(x, x, y), S(x, x, T x), S(y, y, T y), S(x, x, T y), S(y, y, T x))$
for all $x, y \in X$ and some $\phi \in \psi$. Then, we have
(a) If ϕ satisfies the condition $\left(A_{1}\right)$, then T has a fixed point. Moreover, for $x_{0} \in X$ and the fixed point x, we have

$$
S\left(T x_{n}, T x_{n}, x\right) \preceq \frac{2 k^{n}}{1-k} S\left(x_{0}, x_{0}, T x_{0}\right)
$$

(b) If ϕ satisfies $\left(A_{2}\right)$, then T has a unique fixed point.
(c) If ϕ satisfies $\left(A_{3}\right)$ and T has a fixed point x, then T is continuous at x.

By putting $F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=h x_{1}(h \in(0,1))$ in Theorem 2.1, then the following Theorem 2.3 can be obtain as its corollary.

Theorem 2.3. [2] Let X be a nonempty set with a S-cone metric $S: X \times$ $X \times X \rightarrow(E, P), P$ a normal cone with normal constant K and $T: X \rightarrow X a$ mapping satisfies the following

$$
S(T x, T x, T y) \preceq h S(x, x, y)
$$

for all $x, y \in X$ and $h \in(0,1)$. Then T has a unique fixed point.

Now, we introdue another implicit relation as follows;
Implicit Relation 2. Let \mathbb{G} be the set of all continuous functions G : $P^{5} \rightarrow P$ consider the following properties;
(G1) there exists $k \in[0,1)$ such that for all $x, y \in P, y \preceq G\left(x, y, y, x, \frac{4 x+y}{3}\right)$ implies that $x \preceq k y$,
(G2) for all $y \in P, y \preceq G(\mathbf{0}, \mathbf{0}, \mathbf{0}, y, \mathbf{0})$ implies that $y=\mathbf{0}$,
(G3) for all $y \in P, y \preceq G\left(y, \mathbf{0}, \mathbf{0}, \mathbf{0}, \frac{y}{3}\right)$ implies that $y=\mathbf{0}$.

Theorem 2.4. Let X be a nonempty set with a cone S-metric $S: X \times X \times X \rightarrow$ P, P a normal cone with normal constant K and $T: X \rightarrow X$ a mapping satisfies the following

$$
\begin{align*}
S(T x, T y, T z) \preceq \quad & G(S(x, y, z), S(x, x, T x), S(y, y, T y), S(z, z, T z), \\
& \left.\frac{1}{3}\{S(x, x, T y)+S(z, z T y)+S(y, y, T x)\}\right) \tag{5}
\end{align*}
$$

for all $x, y \in X$ and some $G \in \mathbb{G}$. If G satisfies $(G 1),(G 2)$ and $(G 3)$, then T has a unique fixed point.

Proof. For $x_{0} \in X$ and $n \in \mathbb{N}$, put $x_{n+1}=T x_{n}$. From (5), the condition (S2) and Lemma 1.1, we have

$$
\begin{aligned}
& S\left(x_{n+1}, x_{n+1}, x_{n}\right)=S\left(T x_{n}, T x_{n}, T x_{n-1}\right) \\
\preceq \quad & G\left(S\left(x_{n}, x_{n}, x_{n-1}\right), S\left(x_{n}, x_{n}, T x_{n}\right), S\left(x_{n}, x_{n}, T x_{n}\right), S\left(x_{n-1}, x_{n-1}, T x_{n-1}\right),\right. \\
& \left.\frac{1}{3}\left\{S\left(x_{n}, x_{n}, T x_{n}\right)+S\left(x_{n-1}, x_{n-1}, T x_{n}\right)+S\left(x_{n}, x_{n}, T x_{n}\right)\right\}\right) \\
= & G\left(S\left(x_{n}, x_{n}, x_{n-1}\right), S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n-1}, x_{n-1}, x_{n}\right),\right. \\
& \left.\frac{1}{3}\left\{S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{n-1}, x_{n-1}, x_{n+1}\right)+S\left(x_{n}, x_{n}, x_{n+1}\right)\right\}\right) \\
= & G\left(S\left(x_{n}, x_{n}, x_{n-1}\right), S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n}, x_{n}, x_{n-1}\right),\right. \\
& \left.\frac{1}{3}\left\{2 S\left(x_{n+1}, x_{n+1}, x_{n}\right)+S\left(x_{n+1}, x_{n+1}, x_{n-1}\right)\right\}\right) \\
\preceq & G\left(S\left(x_{n}, x_{n}, x_{n-1}\right), S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n}, x_{n}, x_{n-1}\right),\right. \\
& \left.\frac{1}{3}\left\{2 S\left(x_{n+1}, x_{n+1}, x_{n}\right)+2 S\left(x_{n+1}, x_{n+1}, x_{n}\right)+S\left(x_{n}, x_{n}, x_{n-1}\right)\right\}\right) \\
= & G\left(S\left(x_{n}, x_{n}, x_{n-1}\right), S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n}, x_{n}, x_{n-1}\right),\right. \\
& \left.\frac{1}{3}\left\{4 S\left(x_{n+1}, x_{n+1}, x_{n}\right)+S\left(x_{n}, x_{n}, x_{n-1}\right)\right\}\right) .
\end{aligned}
$$

Since G satisfies the condition ($G 1$), there exists $k \in[0,1)$ such that

$$
\begin{aligned}
S\left(x_{n+1}, x_{n+1}, x_{n}\right) & \preceq k S\left(x_{n}, x_{n}, x_{n-1}\right) \preceq k^{2} S\left(x_{n-1}, x_{n-1}, x_{n-2}\right) \\
& \preceq \cdots \preceq k^{n+1} S\left(x_{1}, x_{1}, x_{0}\right) .
\end{aligned}
$$

From the above inequality, we have

$$
\begin{align*}
S\left(x_{n}, x_{n}, x_{m}\right) & \preceq 2 S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{m}, x_{m}, x_{n+1}\right) \\
& =2 S\left(x_{n+1}, x_{n+1}, x_{n}\right)+S\left(x_{n+1}, x_{n+1}, x_{m}\right) \\
& \preceq 2 k^{n+1} S\left(x_{1}, x_{1}, x_{0}\right)+2 S\left(x_{n+1}, x_{n+1}, x_{n+2}\right)+S\left(x_{m}, x_{m}, x_{n+2}\right) \\
& \preceq 2 k^{n+1} S\left(x_{1}, x_{1}, x_{0}\right)+2 k^{n+2} S\left(x_{1}, x_{1}, x_{0}\right)+S\left(x_{n+2}, x_{n+2}, x_{m}\right) \\
& \preceq \cdots \\
& \preceq 2\left(k^{n+1}+k^{n+2}+\cdots+k^{m}\right) S\left(x_{1}, x_{1}, x_{0}\right) \\
& =2 \frac{k^{n+1}\left(1-k^{m-n}\right)}{1-k} S\left(x_{1}, x_{1}, x_{0}\right) \\
& \preceq 2 \frac{k^{n+1}}{1-k} S\left(x_{1}, x_{1}, x_{0}\right) \text { for } n<m \tag{6}
\end{align*}
$$

which implies that

$$
\left\|S\left(x_{n}, x_{n}, x_{m}\right)\right\| \leq 2 \frac{k^{n+1}}{1-k} K\left\|S\left(x_{1}, x_{1}, x_{0}\right)\right\| \rightarrow 0 \text { as } n, m \rightarrow \infty
$$

Therefore, we have $S\left(x_{n}, x_{n}, x_{m}\right) \rightarrow \overline{0}$ as $n, m \rightarrow \infty$ and thus $\left\{x_{n}\right\}$ is a Cauchy sequence. By the completeness of $X, \lim _{n \rightarrow \infty} x_{n}=x$ for some $x \in X$. Now, we show that x is a fixed point of T. From (5) and Lemma 1.1, we have

$$
\begin{aligned}
& S\left(x_{n+1}, x_{n+1}, T x\right)=S\left(T x_{n}, T x_{n}, T x\right) \\
\preceq & G\left(S\left(x_{n}, x_{n}, x\right), S\left(x_{n}, x_{n}, T x_{n}\right), S\left(x_{n}, x_{n}, T x_{n}\right), S(x, x, T x),\right. \\
& \left.\frac{1}{3}\left\{S\left(x_{n}, x_{n}, T x_{n}\right)+S\left(x, x, T x_{n}\right)+S\left(x_{n}, x_{n}, T x_{n}\right)\right\}\right) \\
= & G\left(S\left(x_{n}, x_{n}, x\right), S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n}, x_{n}, x_{n+1}\right), S(x, x, T x),\right. \\
& \left.\frac{1}{3}\left\{S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x, x, x_{n+1}\right)+S\left(x_{n}, x_{n}, x_{n+1}\right)\right\}\right) \\
= & G\left(S\left(x_{n}, x_{n}, x\right), S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n}, x_{n}, x_{n+1}\right), S(x, x, T x),\right. \\
& \left.\frac{1}{3}\left\{2 S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x, x, x_{n+1}\right)\right\}\right) .
\end{aligned}
$$

Since G is continuous, taking the limits as $n \rightarrow \infty$ in the above inequality, we have

$$
S(x, x, T x) \preceq G(\mathbf{0}, \mathbf{0}, \mathbf{0}, S(x, x, T x), \mathbf{0}) .
$$

Since G satisfies the condition $(G 2)$, we obtain $S(x, x, T x) \preceq k \cdot \overline{0}=\overline{0}$. Thus, x is a fixed point of T.

Suppose that T has two distinct fixed points y and z in X. From (5) and Lemma 1.1, we obtain

$$
\begin{aligned}
& S(y, y, z)=S(T y, T y, T z) \\
\preceq & G(S(y, y, z), S(y, y, T y), S(y, y, T y), S(z, z, T z), \\
& \left.\frac{1}{3}\{S(y, y, T y)+S(z, z, T y)+S(y, y, T y)\}\right) \\
= & G(S(y, y, z), S(y, y, y), S(y, y, y), S(z, z, z), \\
& \left.\frac{1}{3}\{S(y, y, y)+S(z, z, y)+S(y, y, y)\}\right) \\
= & G\left(S(y, y, z), \mathbf{0}, \mathbf{0}, \mathbf{0}, \frac{1}{3} S(y, y, z)\right) .
\end{aligned}
$$

Since G satisfies the condition $(G 3)$, we have $S(y, y, z)=\overline{0}$. From ($S 1$), we have $y=z$. Thus, T has a unique fixed point.

If P is a set of nonnegative real numbers and $G\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right):=F\left(x_{1}, x_{2}, x_{3}, x_{5}\right)$, then Theorem 2.4 can be modified as follows, which is the result in [8].

Theorem 2.5. [8] Let X be a nonempty set with a S-metric $S: X \times X \times X \rightarrow$ $[0, \infty)$ and $T: X \rightarrow X$ a mapping satisfies the following

$$
\begin{aligned}
S(T x, T y, T z) \preceq & F(S(x, y, z), S(x, x, T x), S(y, y, T y), \\
& \left.\frac{1}{3}\{S(x, x, T y)+S(z, z T y)+S(y, y, T x)\}\right)
\end{aligned}
$$

for all $x, y \in X$ and some $F \in F_{S}$. If F satisfies $(R 1),(R 2)$ and $(R 3)$, then T has a unique fixed point.

References

[1] B.C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), no. 4, 329-336.
[2] D. Dhamodharan and R. Krishnakumar, Cone S-metric space and fixed point theorems of contractive mappings, Annals of Pure Appl. Math. 14 (2017), no. 2, 237-243.
[3] L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468-1476.
[4] Z. Mustafa and B. I. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
[5] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Ceret. St. Ser. Mat. Univ. Bacau 7 (1997), 127-133.
[6] __ On some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32 (1999), no. 1, 157-163.
[7] G. S. Saluja, Fixed point theorems on cone S-metric spaces using implicit relation, CUBO 22 (2020), no. 2, 273-289.
[8] , Some fixed point theorems under implicit relation on S-metric spaces, Bull. Int. Math. Virtual Inst. 11 (2021), no. 2, 327-340.
[9] S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D^{*}-metric spaces, Fixed Point Theory Appl. (2007), Article ID 027906.
[10] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (2012), no. 3, 258-266.
[11] S. Sedghi,and N.V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (2014), no. 1, 113-124.

Seung Hyun Kim
Department of Mathematics, Kyungsung University, Busan 48434, Korea
Email address: jiny0610@hotmail.com
Mee Kwang Kang
Department of Mathematics, Dongeui University, Busan 47340, Korea
Email address: mee@deu.ac.kr

[^0]: Received September 19, 2022; Accepted December 11, 2022.
 2000 Mathematics Subject Classification. Primary 47H10; Secondary 54C60.
 Key words and phrases. fixed points, cone S-metric spaces.

 * Corresponding author.

