DOI QR코드

DOI QR Code

Laboratory geometric calibration simulation analysis of push-broom satellite imaging sensor

  • Reza Sh., Hafshejani (Department of Remote Sensing Payloads, Satellite System Research Institute, Iranian Space Research Center) ;
  • Javad, Haghshenas (Department of Remote Sensing Payloads, Satellite System Research Institute, Iranian Space Research Center)
  • Received : 2022.07.05
  • Accepted : 2023.01.17
  • Published : 2023.01.25

Abstract

Linear array imaging sensors are widely used in remote sensing satellites. The final products of an imaging sensor can only be used when they are geometrically, radiometrically, and spectrally calibrated. Therefore, at the first stages of sensor design, a detailed calibration procedure must be carefully planned based on the accuracy requirements. In this paper, focusing on inherent optical distortion, a step-by-step procedure for laboratory geometric calibration of a typical push-broom satellite imaging sensor is simulated. The basis of this work is the simulation of a laboratory procedure in which a linear imager mounted on a rotary table captures images of a pin-hole pattern at different angles. By these images and their corresponding pinhole approximation, the correction function is extracted and applied to the raw images to give the corrected ones. The simulation results illustrate that using this approach, the nonlinear effects of distortion can be minimized and therefore the accuracy of the geometric position of this method on the image screen can be improved to better than the order of sub-pixel. On the other hand, the analyses can be used to proper laboratory facility selection based on the imaging sensor specifications and the accuracy.

Keywords

References

  1. Atkinson, K.B. (1996), Close Range Photogrammetry and Machine Vision, Whittles.
  2. Bentley, J. (2012), "Field guide to lens design, spie field guides vol", FG27, Bellingham, WA, USA.
  3. Brown, D.C. (1968), "Advanced methods for the calibration of metric cameras", DBA SYSTEMS INC MELBOURNE FL.
  4. Carman, P. and Brown, H. (1961), "Camera calibration in Canada", Can. Survey., 15(8), 425-439. https://doi.org/10.1139/tcs-1961-0030
  5. Centre, O.M. (2003), Handbook of Practical Camera Calibration Methods and Models Optical Metrology Centre, Chapter 4, Camera Calibration Methods.
  6. Chen, T., Shibasaki, R. and Shunji, M. (2003), "Development and calibration of the airborne three-line scanner (TLS) imaging system", Photogram. Eng. Remote Sens., 69(1), 71-78. https://doi.org/10.14358/PERS.69.1.71.
  7. Clarke, T., Wang, X. and Fryer, J. (1998), "The principal point and CCD cameras", Photogramm. Record, 16(92), 293-312. https://doi.org/10.1111/0031-868X.00127.
  8. Clarke, T.A. and Fryer, J.G. (1998), "The development of camera calibration methods and models", Photogramm. Record, 16(91), 51-66. https://doi.org/10.1111/0031-868X.00113.
  9. Cramer, M. (2004), "EuroSDR network on digital camera calibration", Report Phase, 1, 53S.
  10. Duane, C.B. (1971), "Close-range camera calibration", Photogramm. Eng., 37(8), 855-866.
  11. Faig, W. (1975), "Calibration of close-range photogrammetric systems: Mathematical formulation", Univ. New Brunswick, Fredericton, N.B., Canada.
  12. Grammatikopoulos, L., Karras, G. and Petsa, E. (2007), "An automatic approach for camera calibration from vanishing points", ISPRS J. Photogram. Remote Sens., 62(1), 64-76. https://doi.org/10.1016/j.isprsjprs.2007.02.002.
  13. Haghshenas, J. (2015), "Effects of satellite platform's vibrations on the image quality of a remote sensing payload: system level design and challenges", Optical Systems Design 2015: Optical Design and Engineering VI, International Society for Optics and Photonics.
  14. Haghshenas, J. (2015), "Maximum allowable low-frequency platform vibrations in high resolution satellite missions: challenges and look-up figures", Optical Systems Design 2015: Optical Design and Engineering VI, International Society for Optics and Photonics.
  15. Haghshenas, J. (2017), "Vibration effects on remote sensing satellite images", Adv. Aircraft Spacecraft Sci., 4(5), 543. https://doi.org/10.12989/aas.2017.4.5.543.
  16. Hallert, B. (1960), Photogrammetry, Basic Principles and General Survey, McGraw-Hill.
  17. Hunt, C.L. (1997), "Automatic calibration of a video camera lens system", Master of Technology in Information Engineering at Massey University, Massey University.
  18. Lerma, J.L. and Cabrelles, M. (2007), "A review and analyses of plumb-line calibration", Photogram. Record, 22(118), 135-150. https://doi.org/10.1111/j.1477-9730.2007.00412.x.
  19. Li, D., Wen, G., Hui, B.W., Qiu, S. and Wang, W. (2014), "Cross-ratio invariant based line scan camera geometric calibration with static linear data", Opt. Laser. Eng., 62, 119-125. https://doi.org/10.1016/j.optlaseng.2014.03.004.
  20. Liao, R., Zhu, J., Yang, L., Lin, J., Sun, B. and Yang, J. (2019), "Flexible calibration method for line-scan cameras using a stereo target with hollow stripes", Opt. Laser. Eng., 113, 6-13. https://doi.org/10.1016/j.optlaseng.2018.09.014.
  21. Merchanta, D., Schenka, A., Habibb, A. and Yoona, T. (2004), "USGS/OSU progress with digital camera in situ calibration methods", Post-launch calibration of satellite sensors: Proceedings of the International Workshop on Radiometric and Geometric Calibration, Gulfport, Mississippi, December.
  22. Pajdla, T. and Urban, M. (1999), "Camera calibration from bundles of parallel lines".
  23. Ricolfe-Viala, C. and Sanchez-Salmeron, A.J. (2010), "Correcting non-linear lens distortion in cameras without using a model", Opt. Laser Technol., 42(4), 628-639. https://doi.org/10.1016/j.optlastec.2009.11.002.
  24. Schmid, H. (1974), "Stellar calibration of the orbigon lens", Photogram. Eng., 40(1), 101-111.
  25. Sun, B., Zhu, J., Yang, L., Yang, S. and Niu, Z. (2016), "Calibration of line-scan cameras for precision measurement", Appl. Opt., 55(25), 6836-6843. https://doi.org/10.1364/AO.55.006836.
  26. Tan, T., Sullivan, G.D. and Baker, K.D. (1995), Recovery of Intrinsic and Extrinsic Camera Parameters using Perspective Views of Rectangles, BMVC, Citeseer.
  27. Tansock, J., Bancroft, D., Butler, J., Cao, C., Datla, R., Hansen, S., Helder, D., Kacker, R., Latvakoski, H. and Mylnczak, M. (2015), "Guidelines for radiometric calibration of electro-optical instruments for remote sensing", National Institute of Standards and Technology.
  28. Walker, R.E. (1994), Marine Light Field Statistics, Wiley-Interscience.
  29. Wang, J., Shi, F., Zhang, J. and Liu, Y. (2008), "A new calibration model of camera lens distortion", Pattern Recogn., 41(2), 607-615. https://doi.org/10.1016/j.patcog.2007.06.012.
  30. Washer, F.E. and Case, F.A. (1950), "Calibration of precision airplane mapping cameras", Photogram. Eng., 16(4), 502-524. https://doi.org/10.6028/jres.045.001
  31. Weng, J., Cohen, P. and Herniou, M. (1992), "Camera calibration with distortion models and accuracy evaluation", IEEE Trans. Pattern Anal. Mach. Intel., 14(10), 965-980. https://doi.org/10.1109/34.159901
  32. Woltring, H. (1980), "Simultaneous multiframe analytical calibrations (SMAC) by recourse to oblique observations of planar control distributions", NATO Symposium on Applications of Human Biostereometrics, International Society for Optics and Photonics.
  33. Zhang, G., Jiang, Y., Li, D., Huang, W., Pan, H., Tang, X. and Zhu, X. (2014), "In-orbit geometric calibration and validation of ZY-3 linear array sensors", Photogram. Record, 29(145), 68-88. https://doi.org/10.1111/phor.12052.