DOI QR코드

DOI QR Code

Multilayered High-directional Waveguide Grating Antenna Based on Interleaved Etching for Optical Phased Arrays

  • Yang Bo (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) ;
  • Qing Wang (Shanghai Industrial muTechnology Research Institute) ;
  • Jinyu Wang (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) ;
  • Yan, Cai (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) ;
  • Wencheng Yue (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) ;
  • Shuxiao Wang (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) ;
  • Wei Wang (Shanghai Industrial muTechnology Research Institute) ;
  • Mingbin Yu (Shanghai Industrial muTechnology Research Institute)
  • Received : 2022.12.01
  • Accepted : 2023.01.17
  • Published : 2023.04.25

Abstract

We propose a highly directional waveguide grating antenna for an optical phased array, achieving high directionality of more than 97% by interleaving the trenches with different etching depths in the silicon nitride layer, and adopting a multilayered structure. Meanwhile, the multilayered structure reduces the perturbation strength, which enables a centimeter-scale radiation length. The beam-steering range is 13.2°, with a wavelength bandwidth of 100 nm. The 1-dB bandwidth of the grating is 305 nm. The multilayered grating structure has a large tolerance to the fabrication variation and is compatible with CMOS fabrication techniques.

Keywords

Acknowledgement

Key Project of National Natural Science Foundation of China (61935003); the Strategic Pioneer Research Projects of Defense Science and Technology (XDB43020500); and the Shanghai Sailing Program (20YF1456900).

References

  1. C. V. Poulton, Y. Ami, D. B. Cole, M. J. Byrd, R. Manan, V. Diedrik, and M. R. Watts, "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Opt. Lett. 42, 4091- 4094 (2017). https://doi.org/10.1364/OL.42.004091
  2. X. Luo, "Perfect absorption of light," in Engineering Optics 2.0 (Springer Singapore, Singapore, 2019), pp. 587-643.
  3. R. Fatemi, A. Khachaturian, and A. Hajimiri, "A nonuniform sparse 2-D large-FOV optical phased array with a low-power PWM drive," IEEE J. Solid-State Circuits 54, 1200-1215 (2019). https://doi.org/10.1109/jssc.2019.2896767
  4. B. Zhang, N. Dostart, A. Khilo, M. Brand, and K. Wagner, "Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering," in Optical Fiber Communication Conference (Optica Publishing Group, 2019), paper M4E.5.
  5. Y. Guo, Y. Guo, C. Li, H. Zhang, and L. Zhang, "Integrated optical phased arrays for beam forming and steering," Appl. Sci. 11, 4017 (2021).
  6. C. S. Min, A. Mohanty, K. Watson, G. R. Bhatt, C. T. Phare, S. A. Miller, M. Zadka, B. S. Lee, X. Ji, I. Datta, and M. Lipson, "Chip-scale blue light phased array," Opt. Lett. 45, 1934-1937 (2020). https://doi.org/10.1364/ol.385201
  7. W. Xu, L. Zhou, L. Lu, and J. Chen, "Aliasing-free optical phased array beam-steering with a plateau envelope," Opt. Express 27, 3354-3368 (2019). https://doi.org/10.1364/OE.27.003354
  8. M. R. Kossey, C. Rizk, and A. Foster, "End-fire silicon optical phased array with half-wavelength spacing," APL Photonics 3, 011301 (2018).
  9. C. T. Phare, C. S. Min, S. A. Miller, B. Stern, and M. Lipson, "Silicon optical phased array with high-efficiency beam formation over 180 degree field of view," arXiv:1802.04624 (2018).
  10. D. Zhuang, L. Zhagn, X. Han, Y. Li, Y. Li, X. Liu, F. Gao, and J. Song, "Omnidirectional beam steering using aperiodic optical phased array with high error margin," Opt. Express 15, 19154-19170 (2018). https://doi.org/10.1364/OE.26.019154
  11. D. N. Hutchison, S. Jie, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, "High-resolution aliasing-free optical beam steering," Optica 3, 887-890 (2016). https://doi.org/10.1364/OPTICA.3.000887
  12. W. Xie, T. Komljenovic, J. Huang, M. L. Davenport, and J. E. Bowers, "Dense III-V/Si phase-shifter based optical phased array," arXiv:1904.01104 (2019).
  13. Q. Wang, S. Wang, Y. Zeng, W. Wang, Y. Cai, Z. Tu, W. Yue, X. Wang, Q. Fang, and M. Yu, "Dual-layer waveguide grating antenna with high directionality for optical phased arrays," Appl. Opt. 58, 5807-5811 (2019). https://doi.org/10.1364/AO.58.005807
  14. S. Khajavi, D. Melati, P. Cheben, J. H. Schmid, Q. Liu, D. X. Xu, and W. N. Ye, "Compact and highly-efficient broadband surface grating antenna on a silicon platform," Opt. Express 29, 7003-7014 (2021). https://doi.org/10.1364/OE.416986
  15. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, "Integrated phased array for wide-angle beam steering," Opt. Lett. 39, 4575-4578 (2014). https://doi.org/10.1364/ol.39.004575
  16. Y. Zhang, Y.-C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. J. B. Yoo, "Sub-wave-length-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering," Opt. Express 27, 1929-1940 (2019). https://doi.org/10.1364/OE.27.001929
  17. R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni, "Coupling strategies for silicon photonics integrated chips [Invited]," Photonics Res. 7, 201-239 (2019). https://doi.org/10.1364/PRJ.7.000201
  18. G. Zhou, S.-W. Qu, J. Wu, and S. Yang, "High-efficiency unidirectional vertical emitter achieved by an aperture-coupling nanoslot antenna array," Opt. Express 29, 25399-25411 (2021). https://doi.org/10.1364/OE.434538
  19. M. Raval, C. V. Poulton, and M. R. Watts, "Unidirectional waveguide grating antennas with uniform emission for optical phased arrays," Opt. Lett. 42, 2563-2566 (2017). https://doi.org/10.1364/OL.42.002563
  20. K. Han, V. Yurlov, and N. E. Yu, "Highly directional waveguide grating antenna for optical phased array," Curr. Appl. Phys. 18, 824-828 (2018). https://doi.org/10.1016/j.cap.2018.04.004
  21. B. Chen, Y. Li, L. Zhang, Y. Li, X. Liu, M. Tao, Y. Hou, H. Tang, Z. Zhi, F. Gao, X. Luo, G. Lo, and J. Song, "Unidirectional large-scale waveguide grating with uniform radiation for optical phased array," Opt. Express 29, 20995-21010 (2021). https://doi.org/10.1364/OE.427999
  22. J. Chen, J. Wang, J. Li, Y. Yao, Y. Sun, J. Tian, Y. Zou, X. Zhao, and X. Xu, "Subwavelength structure enabled ultra-long waveguide grating antenna," Opt. Express 29, 15133-15144 (2021). https://doi.org/10.1364/OE.421529
  23. P. Ginel-Moreno, D. Pereira-Martin, A. Hadij-ElHouati, W. N. Ye, D. Melati, D.-X. Xu, S. Janz, A. Ortega-Monux, J. G. Wanguemert-Perez, R. Halir, I. Molina-Fernandez, J. H. Schmid, and P. Cheben, "Highly efficient optical antenna with small beam divergence in silicon waveguides," Opt. Lett. 45, 5668-5671 (2020). https://doi.org/10.1364/ol.404012
  24. P. Ginel-Moreno, A. Sanchez-Postigo, J. de-Oliva-Rubio, A. Hadij-ElHouati, W. N. Ye, J. G. Wanguemert-Perez, I. MolinaFernandez, J. H. Schmid, P. Cheben, and A. Ortega-Monux, "Millimeter-long metamaterial surface-emitting antenna in the silicon photonics platform," Opt. Lett. 46, 3733-3736 (2021). https://doi.org/10.1364/OL.431983
  25. P. Ma, P. Wang, M. Wang, G. Luo, L. Yu, L. Cui, X. Zhou, Y. Zhang, and J. Pan, "A SiN antenna based on grating-wave-guide-grating structure for unidirectional and uniform emission," Opt. Commun. 527, 128959 (2023).
  26. M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, "On-chip platform for a phased array with minimal beam divergence and wide field-of-view," Opt. Express 26, 2528-2534 (2018). https://doi.org/10.1364/OE.26.002528
  27. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 1st ed. (Wiley, USA, 1998).
  28. C. A. Flory, "Analysis of directional grating-coupled radiation in waveguide structures," IEEE J. Quantum Electron. 40, 949-957 (2004). https://doi.org/10.1109/JQE.2004.830179
  29. C. Alonso-Ramos, P. Cheben, A. Ortega-Monux, J. H. Schmid, D. X. Xu, and I. Molina-Fernandez, "Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%," Opt. Lett. 39, 5351-5354 (2014). https://doi.org/10.1364/OL.39.005351
  30. D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Monux, J. G. Wanguemert-Perez, I. Molina-Fernandez, J.-M. Fedeli, L. Vivien, and M. Dado, "High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure," Opt. Lett. 40, 4190-4193 (2015).  https://doi.org/10.1364/OL.40.004190