DOI QR코드

DOI QR Code

Machine Learning Approaches for Anticancer Peptide Discovery: A Comprehensive Review

  • Priya Dharshini (Computational Biology Laboratory, Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology)
  • Received : 2023.08.26
  • Accepted : 2023.11.13
  • Published : 2023.12.31

Abstract

Invasive species are organisms that are introduced into places outside of their natural distribution range. The global pet trade is facilitating the introduction of invasive species into new countries and areas. Among the introduced alien species, turtles are one of the most common animal groups whether lives in wetland ecosystems, such as wetlands or reservoirs. Like other countries around the world, exotic turtles is becoming a growing concern for the wetland ecosystem in South Korea. In this study, we report new reports of subspecies of Painted turtle (Chrysemys spp.): Chrysemys picta marginata, C. p. bellii and C. dorsalis, from the reservoirs in downtown Cheongju and Gwangju, South Korea. We used morphological features, such as the characteristics of the legs, plastron, and carapace, to identify the turtles. It is assumed that all turtles were artificially released into nature. Considering the increasing number of reports on the introduction of alien invasive turtles in Korean wetlands, we recommend the formulation of an immediate and systematic management plan for pet trades and organized continuous monitoring programs.

Keywords

References

  1. Ortega-Garcia MB, Mesa A, Moya ELJ, Rueda B, Lopez-Ordono G, Garcia JA, et al. Uncovering Tumour Heterogeneity through PKR and nc886 Analysis in Metastatic Colon Cancer Patients Treated with 5-FU-Based Chemotherapy. Cancers (Basel) 2020;12(2).
  2. Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides. Molecules 2019;24(10).
  3. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today 2015;20(1):122-8.
  4. Padhi A, Sengupta M, Sengupta S, Roehm KH, Sonawane A. Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects. Tuberculosis (Edinb) 2014;94(4):363-73. https://doi.org/10.1016/j.tube.2014.03.011
  5. Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2018;61(4):1382-414.
  6. Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2017;8(28):46635-51. https://doi.org/10.18632/oncotarget.16743
  7. Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GPS. In silico models for designing and discovering novel anticancer peptides. Sci Rep 2013;3:2984.
  8. Manavalan B, Basith S, Shin TH, Choi S, Kim MO, Lee G. MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget 2017;8(44):77121-36. https://doi.org/10.18632/oncotarget.20365
  9. Manavalan B, Shin TH, Lee G. DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest. Oncotarget 2018;9(2):1944-56. https://doi.org/10.18632/oncotarget.23099
  10. Melo MN, Ferre R, Feliu L, Bardaji E, Planas M, Castanho MARB. Prediction of antibacterial activity from physicochemical properties of antimicrobial peptides. PLoS One 2011;6(12):e28549.
  11. Al-Benna S, Shai Y, Jacobsen F, Steinstraesser L. Oncolytic activities of host defense peptides. Int J Mol Sci 2011;12(11):8027-51. https://doi.org/10.3390/ijms12118027
  12. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016;44(D1):D1087-93. https://doi.org/10.1093/nar/gkv1278
  13. Minkiewicz P, Iwaniak A, Darewicz M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int J Mol Sci 2019;20(23).
  14. Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S. CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 2014;42(Database issue):D1154-8. https://doi.org/10.1093/nar/gkt1157
  15. Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, et al. CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res 2015;43(Database issue):D837-43. https://doi.org/10.1093/nar/gku892
  16. Kang X, Dong F, Shi C, Liu S, Sun J, Chen J, et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data [Internet] 2019;6(1):148. Available from : https://doi.org/10.1038/s41597-019-0154-y
  17. Zhao X, Wu H, Lu H, Li G, Huang Q. LAMP: A Database Linking Antimicrobial Peptides. PLoS One 2013;8(6):e66557.
  18. Liu F, Baggerman G, Schoofs L, Wets G. The construction of a bioactive peptide database in Metazoa. J Proteome Res 2008;7(9):4119-31.
  19. Singh S, Chaudhary K, Dhanda SK, Bhalla S, Usmani SS, Gautam A, et al. SATPdb: a database of structurally annotated therapeutic peptides. Nucleic Acids Res 2016;44(D1):D1119-26. https://doi.org/10.1093/nar/gkv1114
  20. Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, et al. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One 2017;12(7):e0181748.
  21. Chen W, Ding H, Feng P, Lin H, Chou KC. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 2016;7(13):16895-909. https://doi.org/10.18632/oncotarget.7815
  22. Li FM, Wang XQ. Identifying anticancer peptides by using improved hybrid compositions. Sci Rep [Internet] 2016;6(1):33910. Available from: https://doi.org/10.1038/srep33910
  23. Akbar S, Hayat M, Iqbal M, Jan MA. iACP-GAEnsC: Evolutionary genetic algorithm based ensemble classification of anticancer peptides by utilizing hybrid feature space. Artif Intell Med 2017;79:62-70. https://doi.org/10.1016/j.artmed.2017.06.008
  24. Yu L, Jing R, Liu F, Luo J, Li Y.DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm. Mol Ther Nucleic Acids 2020;22:862-70. https://doi.org/10.1016/j.omtn.2020.10.005
  25. Charoenkwan P, Chiangjong W, Lee VS, Nantasenamat C, Hasan MM, Shoombuatong W. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Sci Rep 2021;11(1):3017.
  26. Hajisharifi Z, Piryaiee M, Mohammad Beigi M, Behbahani M, Mohabatkar H. Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test. J Theor Biol 2014;341:34-40. https://doi.org/10.1016/j.jtbi.2013.08.037
  27. Xu L, Liang G, Wang L, Liao C. A Novel Hybrid Sequence-Based Model for Identifying Anticancer Peptides. Genes (Basel) 2018;9(3).
  28. Boopathi V, Subramaniyam S, Malik A, Lee G, Manavalan B, Yang DC. mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides. Int J Mol Sci 2019;20(8).
  29. Li Q, Zhou W, Wang D, Wang S, Li Q. Prediction of Anticancer Peptides Using a Low-Dimensional Feature Model. Front Bioeng Biotechnol 2020;8:892.
  30. Akbar S, Hayat M, Tahir M, Khan S, Alarfaj FK. CACP-DeepGram: Classification of Anticancer Peptides via Deep Neural Network and Skip-Gram-Based Word Embedding Model. Artif Intell Med [Internet] 2022;131(C). Available from: https://doi.org/10.1016/j.artmed.2022.102349
  31. Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava GPS. AntiCP 2.0: an updated model for predicting anticancer peptides. Brief Bioinform 2021;22(3).
  32. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019;18(6):463-77. https://doi.org/10.1038/s41573-019-0024-5
  33. Li F, Chen J, Leier A, Marquez-Lago T, Liu Q, Wang Y, et al. DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites. Bioinformatics 2020;36(4):1057-65. https://doi.org/10.1093/bioinformatics/btz721
  34. Mei S, Li F, Leier A, Marquez-Lago TT, Giam K, Croft NP, et al. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Brief Bioinform 2020;21(4):1119-35. https://doi.org/10.1093/bib/bbz051
  35. Cao R, Adhikari B, Bhattacharya D, Sun M, Hou J, Cheng J. QAcon: single model quality assessment using protein structural and contact information with machine learning techniques. Bioinformatics 2017;33(4):586-8. https://doi.org/10.1093/bioinformatics/btw694
  36. Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation. Int J Mol Sci 2019;20(22).