References
- Ortega-Garcia MB, Mesa A, Moya ELJ, Rueda B, Lopez-Ordono G, Garcia JA, et al. Uncovering Tumour Heterogeneity through PKR and nc886 Analysis in Metastatic Colon Cancer Patients Treated with 5-FU-Based Chemotherapy. Cancers (Basel) 2020;12(2).
- Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides. Molecules 2019;24(10).
- Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today 2015;20(1):122-8.
- Padhi A, Sengupta M, Sengupta S, Roehm KH, Sonawane A. Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects. Tuberculosis (Edinb) 2014;94(4):363-73. https://doi.org/10.1016/j.tube.2014.03.011
- Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2018;61(4):1382-414.
- Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2017;8(28):46635-51. https://doi.org/10.18632/oncotarget.16743
- Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GPS. In silico models for designing and discovering novel anticancer peptides. Sci Rep 2013;3:2984.
- Manavalan B, Basith S, Shin TH, Choi S, Kim MO, Lee G. MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget 2017;8(44):77121-36. https://doi.org/10.18632/oncotarget.20365
- Manavalan B, Shin TH, Lee G. DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest. Oncotarget 2018;9(2):1944-56. https://doi.org/10.18632/oncotarget.23099
- Melo MN, Ferre R, Feliu L, Bardaji E, Planas M, Castanho MARB. Prediction of antibacterial activity from physicochemical properties of antimicrobial peptides. PLoS One 2011;6(12):e28549.
- Al-Benna S, Shai Y, Jacobsen F, Steinstraesser L. Oncolytic activities of host defense peptides. Int J Mol Sci 2011;12(11):8027-51. https://doi.org/10.3390/ijms12118027
- Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016;44(D1):D1087-93. https://doi.org/10.1093/nar/gkv1278
- Minkiewicz P, Iwaniak A, Darewicz M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int J Mol Sci 2019;20(23).
- Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S. CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 2014;42(Database issue):D1154-8. https://doi.org/10.1093/nar/gkt1157
- Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, et al. CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res 2015;43(Database issue):D837-43. https://doi.org/10.1093/nar/gku892
- Kang X, Dong F, Shi C, Liu S, Sun J, Chen J, et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data [Internet] 2019;6(1):148. Available from : https://doi.org/10.1038/s41597-019-0154-y
- Zhao X, Wu H, Lu H, Li G, Huang Q. LAMP: A Database Linking Antimicrobial Peptides. PLoS One 2013;8(6):e66557.
- Liu F, Baggerman G, Schoofs L, Wets G. The construction of a bioactive peptide database in Metazoa. J Proteome Res 2008;7(9):4119-31.
- Singh S, Chaudhary K, Dhanda SK, Bhalla S, Usmani SS, Gautam A, et al. SATPdb: a database of structurally annotated therapeutic peptides. Nucleic Acids Res 2016;44(D1):D1119-26. https://doi.org/10.1093/nar/gkv1114
- Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, et al. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One 2017;12(7):e0181748.
- Chen W, Ding H, Feng P, Lin H, Chou KC. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 2016;7(13):16895-909. https://doi.org/10.18632/oncotarget.7815
- Li FM, Wang XQ. Identifying anticancer peptides by using improved hybrid compositions. Sci Rep [Internet] 2016;6(1):33910. Available from: https://doi.org/10.1038/srep33910
- Akbar S, Hayat M, Iqbal M, Jan MA. iACP-GAEnsC: Evolutionary genetic algorithm based ensemble classification of anticancer peptides by utilizing hybrid feature space. Artif Intell Med 2017;79:62-70. https://doi.org/10.1016/j.artmed.2017.06.008
- Yu L, Jing R, Liu F, Luo J, Li Y.DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm. Mol Ther Nucleic Acids 2020;22:862-70. https://doi.org/10.1016/j.omtn.2020.10.005
- Charoenkwan P, Chiangjong W, Lee VS, Nantasenamat C, Hasan MM, Shoombuatong W. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Sci Rep 2021;11(1):3017.
- Hajisharifi Z, Piryaiee M, Mohammad Beigi M, Behbahani M, Mohabatkar H. Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test. J Theor Biol 2014;341:34-40. https://doi.org/10.1016/j.jtbi.2013.08.037
- Xu L, Liang G, Wang L, Liao C. A Novel Hybrid Sequence-Based Model for Identifying Anticancer Peptides. Genes (Basel) 2018;9(3).
- Boopathi V, Subramaniyam S, Malik A, Lee G, Manavalan B, Yang DC. mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides. Int J Mol Sci 2019;20(8).
- Li Q, Zhou W, Wang D, Wang S, Li Q. Prediction of Anticancer Peptides Using a Low-Dimensional Feature Model. Front Bioeng Biotechnol 2020;8:892.
- Akbar S, Hayat M, Tahir M, Khan S, Alarfaj FK. CACP-DeepGram: Classification of Anticancer Peptides via Deep Neural Network and Skip-Gram-Based Word Embedding Model. Artif Intell Med [Internet] 2022;131(C). Available from: https://doi.org/10.1016/j.artmed.2022.102349
- Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava GPS. AntiCP 2.0: an updated model for predicting anticancer peptides. Brief Bioinform 2021;22(3).
- Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019;18(6):463-77. https://doi.org/10.1038/s41573-019-0024-5
- Li F, Chen J, Leier A, Marquez-Lago T, Liu Q, Wang Y, et al. DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites. Bioinformatics 2020;36(4):1057-65. https://doi.org/10.1093/bioinformatics/btz721
- Mei S, Li F, Leier A, Marquez-Lago TT, Giam K, Croft NP, et al. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Brief Bioinform 2020;21(4):1119-35. https://doi.org/10.1093/bib/bbz051
- Cao R, Adhikari B, Bhattacharya D, Sun M, Hou J, Cheng J. QAcon: single model quality assessment using protein structural and contact information with machine learning techniques. Bioinformatics 2017;33(4):586-8. https://doi.org/10.1093/bioinformatics/btw694
- Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation. Int J Mol Sci 2019;20(22).