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Abstract

Invasive species are organisms that are introduced into places outside of their natural 
distribution range. The global pet trade is facilitating the introduction of invasive species into new 
countries and areas. Among the introduced alien species, turtles are one of the most common 
animal groups whether lives in wetland ecosystems, such as wetlands or reservoirs. Like other 
countries around the world, exotic turtles is becoming a growing concern for the wetland ecosystem 
in South Korea. In this study, we report new reports of subspecies of Painted turtle (Chrysemys 
spp.): Chrysemys picta marginata, C. p. bellii and C. dorsalis, from the reservoirs in downtown 
Cheongju and Gwangju, South Korea. We used morphological features, such as the characteristics 
of the legs, plastron, and carapace, to identify the turtles. It is assumed that all turtles were 
artificially released into nature. Considering the increasing number of reports on the introduction of 
alien invasive turtles in Korean wetlands, we recommend the formulation of an immediate and 
systematic management plan for pet trades and organized continuous monitoring programs.
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1. Introduction

Cancer continues to be a significant and 
formidable health threat worldwide, 
characterized by uncontrolled cell growth and 
the ability to spread to other parts of the 
body. Its complex nature allows it to affect 
various tissues and organs, impacting people 
globally. As life expectancy rises in developed 
and developing countries, cancer prevalence 
has increased, leading to higher mortality 
rates[1]. Despite the availability of advanced 
clinical treatments such as chemotherapy, 
radiation therapy, and hormonal therapy, the 
recurrence of cancer remains alarmingly 
high. Moreover, these treatments often cause 
damage to normal, resulting in 
immunodeficiency among patients.

Hence, there is an urgent need to explore 
and create novel anti-cancer drugs that can 
reduce premature deaths and improve 
survival rates among affected populations. 
Peptide-based therapeutics have emerged as 
a promising drug class due to their perceived 
safety, high selectivity, good tolerability, lower 
production costs, ease of modification and 
synthesis, and favorable pharmacological 
properties. These attributes make them an 
attractive avenue for advancing cancer 
treatment and finding more effective and 
targeted therapies[2]. 

Peptides are short chains of amino acids, 
which are thefundamental building blocks of 
proteins. They play vital roles in various 
biological processes and are involved in 
numerous physiological functions within living 
organisms. In biological systems, peptides 
serve as signaling molecules, 
neurotransmitters, hormones, and enzymes, 

among other essential roles. They are 
responsible for transmitting information 
between cells, regulating various cellular 
activities, and coordinating complex 
physiological responses. Due to their diverse 
functions and potential therapeutic 
applications, peptides have garnered 
significant interest in the fields of medicine 
and biotechnology[3]. Peptide-based drugs 
have shown promising results in treating a 
wide range of medical conditions, including 
cancer, diabetes, cardiovascular diseases, and 
infectious diseases. One of the remarkable 
advantages of peptides is their specificity and 
selectivity[3]. They can be designed to interact 
with specific receptors or targets, making 
them highly effective and reducing the risk of 
off-target effects compared to traditional 
small molecule drugs. Additionally, peptides 
often exhibit lower toxicity and are 
well-tolerated by the human body, 
contributing to their safety profile in 
therapeutic applications. Moreover, the 
development of peptide synthesis techniques 
and delivery methods has expanded the 
possibilities of using peptides as therapeutic 
agents[4].

Recent research has identified certain 
peptides with diverse biological properties, 
making them potential candidates for novel 
therapeutics.These peptides include 
antiangiogenic peptides (AAPs), antibacterial 
peptides (ABPs), anticancer peptides (ACPs), 
antifungal peptides (AFPs), and more. The 
remarkable chemical and biological diversity 
exhibited by peptides adds to their 
attractiveness for therapeutic development. 
These discoveries raise the prospect of 
exploiting the unique properties of peptides to 
develop novel treatments for a variety of 
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medical diseases[5].

Anticancer peptides  represent a subset of 
antimicrobial peptides (AMPs) that have 
demonstrated the ability to exhibit anticancer 
activities. These ACPs can selectively 
recognize and interact with cancerous cells, 
leading to their destruction through various 
mechanisms, including induction of apoptosis 
(programmed cell death) and disruption of 
cancer cell membranes[6]. Indeed, the 
accurate prediction of Anticancer Peptides is 
of utmost importance for advancing cancer 
research and therapeutic development. The 
traditional experimental identification and 
development of ACPs can be a 
time-consuming and labor-intensive process. 
Therefore, bioinformatics tools and 
computational approaches are becoming 
increasingly crucial for effectively analyzing 
the vast amount of available data on existing 
peptides[7]. Machine learning (ML)-based 
computational approaches offer rapid and 
cost-effective pre-screening tools to navigate 
the vast combinatorial sequence space 
efficiently. By analyzing extensive peptide 
databases and learning from existing peptide 
data, ML models can predict and prioritize 
potential peptide candidates. This streamlined 
approach significantly accelerates and 
simplifies the burdensome process of peptide 
discovery, making it more efficient and 
accessible for researchers[8]. It allows for the 
identification of promising peptide sequences, 
which can then be further validated and 
optimized through experimental studies, 
leading to the potential development of novel 
and effective peptide-based therapeutics[9].

2. Peptides as Promising Anticancer

Agents

ACPs are small peptides that usually 
contain 5 to 50 amino acid residues while 
possessing high hydrophobicity and a positive 
net charge. Thus, ACPs can interact with 
anionic cell membrane components of cancer 
cells and then selectively kill cancer cells. 
Additionally, ACPs can interfere with cancer 
cells by causing apoptosis mediated via 
mitochondrial disruption, triggering necrosis 
via cell lysis, stimulate the immune system of 
the host and prevent tumour angiogenesis. 
ACPs have biological properties, making them 
potential candidates for novel therapeutics[10]. 
These peptides include antiangiogenic 
peptides, antibacterial peptides, anticancer 
peptides, antifungal peptides and more. The 
remarkable chemical and biological diversity 
exhibited by peptides adds to their 
attractiveness for therapeutic development. 
These discoveries raise the prospect of 
exploiting the unique properties of peptides to 
develop novel treatments for a variety of 
medical diseases[11].

3. Data Sources and Datasets for

Bioactive and Therapeutic Peptides

The landscape of bioactive and therapeutic 
peptides is illuminated by a range of 
comprehensive databases, each serving as a 
vital repository of essential peptide-related 
information. These data sources collectively 
contribute to advancing peptide research and 
therapeutic development. One prominent 
database is the APD3 (Antimicrobial Peptide 
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Database 3) which catalogues natural 
antimicrobial peptides characterized by 
defined sequences and activity profiles 
(http://aps.unmc.edu/AP/)[12]. BIOPEP is 
another valuable resource that focuses on 
biologically active peptide sequences, offering 
a diverse collection of peptides with various 

functionalities (http://www.uwm.edu.pl/bio-c
hemia/index.php/en/biopep)[13]. Delving into 
sequences, structures, and signatures of 
prokaryotic and eukaryotic AMPs, the CAMP 
(Collection of Anti-Microbial Peptides) 
database provides insights into antimicrobial 
peptides (http://www.camp.bic-nirrh.res.in/)[14]. 
Addressing the realm of anticancer peptides, 
the CancerPPD (CancerPPD: a database of 
anticancer peptides and proteins) database 
houses experimentally verified anticancer 
peptides and associated proteins, supporting 
cancer research and therapeutic innovations 
(http://crdd.osdd.net/raghava/can
cerppd/)[15]. DRAMP (Database of 
Antimicrobial Peptides) takes an innovative 
approach by offering a resource for 
sequence- and structure-activity studies on 
AMPs (http://dramp.cpu-bioinfor.org)[16]. To 
aid in the discovery and design of 
antimicrobial agents, the LAMP (Landscape of 
Antimicrobial Peptides) database provides an 
invaluable tool (http://biotechlab.fudan.edu.cn/
database/lamp)[17]. PeptideDB, in contrast, 
encompasses a wide spectrum of naturally 
occurring signaling peptides, contributing to 
various biological processes (http://www.peptides
.be/)[18]. SATPdb (Structurally Annotated 
Therapeutic Peptide Database) focuses on 
structurally annotated therapeutic peptides 
with experimentally validated sequences, 
providing insights into therapeutic peptide 
design (http://crdd.osdd.net/raghava/satpdb/)[19]. 

Lastly, THPdb (Therapeutic Peptide Database) 
compiles FDA-approved therapeutic peptides 
and proteins, enhancing drug discovery 
efforts (http://crdd.osdd.net/raghava
/thpdb/index.html )[20].

3. Existing Machine Learning

approaches for the prediction of ACPs

In this section, we delve into the utilization 
of established techniques for classifying 
Anticancer Peptides through traditional 
machine learning approaches. The manual 
experimentation strategy for identifying new 
Anticancer Peptides is recognized for its 
time-consuming and costly nature. Given the 
pivotal role that ACPs play, both academic 
researchers and pharmaceutical companies 
have increasingly embraced automation as a 
viable alternative for ACP identification. 
Considering this, researchers have harnessed 
various automated intelligence algorithms to 
forecast Anticancer Peptides. In a notable 
anticancer investigation[21]. Chen et al. 
introduced the "iACP" framework tailored for 
peptide identification. Their approach 
synergistically employed an improved G-Gap 
DPC in conjunction with a refined peptide 
sequence formulation. Similarly, Manavalan et 
al. introduced an innovative model for ACP 
prediction[8]. The composite feature set, in 
this context, is strategically composed of 
optimal information, encompassing 
physicochemical properties, DPC, ionic 
attributes, and more. Employing K-fold 
cross-validation, their proposed system 
underwent training and testing phases, 
ensuring robustness and reliability. 
Additionally, Tyagi et al. devised in silico 
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algorithms aimed at discerning ACPs from 
uncharacterized sequences[7]. The evaluation 
of the peptide’s classification model was 
conducted using four distinct 
datasets.Conversely, two statistical methods, 
namely split AAC and binary profile, were 
employed for peptides encoding. Meanwhile, 
Li et al. introduced an innovative approach 
that leverages feature integration for 
enhanced ACP discrimination[22]. To extract 
robust features, a streamlined variant of 
AAC, individual amino acid properties, and 
traditional AAC were amalgamated. Through 
the application of Support Vector Machines 
(SVM), the predictive model showcased 
improved accuracy performance. Akbar et al. 
contributed by crafting a novel model dubbed 
"iACP-GAEnsC" for ACP identification[23]. In 
their pursuit, they adopted a hybrid encoding 
strategy to extract highly representative 
features from the target peptides. The 
integration of an evolving genetic algorithm 
served as a pivotal component in evaluating 
the performance implications of this newly 
devised technique. In a similar vein, Kabir et 
al. pioneered the "TargetACP" approach, 
harnessing revolutionary adaptive genetic 
algorithms and sequential insights[24]. 
Additionally, the synthetic minority 
oversampling technique emerged as a 
strategic solution to equitably distribute 
samples between minority and majority 
classes, culminating in balanced proportions. 
The proposed system underwent rigorous 
testing against diverse benchmark datasets, 
yielding superior performance outcomes.
Furthermore, Kumar et al. unveiled a 
noteworthy web server titled "ACPP," 
purpose-built to accurately discern positive 
peptides from their negative counterparts[25]. 

Their system encompasses a plethora of 
customizable settings, empowering operators 
to meticulously construct and identify ACPs. 
Notably, it extends its utility by offering 
insights into the cytotoxic function associated 
with each target peptide. Echoing a similar 
sentiment, Hajisharifi et al. ventured into the 
prediction of ACPs through the integration of 
pseudo amino acid composition (PseAAC) and 
a distinctive kernel featuring local 
alignment[26].

In a parallel vein, Xu et al. embarked on a 
subsequent investigation wherein the g-gap 
DPC approach was harnessed for the 
encoding of peptides[27]. To mitigate the 
presence of redundant and homogeneous 
features, they adopted the approach of 
maximum relevance-maximum distance. To 
enhance performance further, Boopathi et al. 
introduced two novel variant feature selection 
techniques, which judiciously select optimal 
yet informative descriptors from a feature 
space generated through seven distinct 
peptide encoding methods[28]. The challenge of 
inadequate performance stemming from 
high-dimensional descriptors confronted most 
of the machine learning models. To tackle 
this issue, Li et al. presented a model 
anchored in diverse feature extraction 
techniques, achieving remarkable 
performance even when utilizing a concise 
19-dimensional vector[29]. Given the vast 
diversity inherent in genomic sequences, 
achieving precise classification of target 
peptides has emerged as a formidable 
challenge. Recognizing this complexity, Akbar 
et al. devised a novel strategy encompassing 
the fusion of three distinct peptide encoding 
methods. Subsequently, the incorporation of 
k-space amino acid pairs was employed to 
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extract more intricately correlated features[30]. 
In a parallel line of inquiry, Agrawal et al. 
embarked on an analysis of the ETree 
classifier's performance in conjunction with 
AAC and DPC. Based on the outcomes of this 
investigation, they developed a web server 
tailor-made for edge devices, capitalizing on 
the model that exhibited the highest 
efficacy[31]. The overview of various studies 
focusing on Anticancer Peptide  prediction 
was mentioned in Table 1.

4. Model refinement and Assessment

of Model Performance

The primary objective of every machine 
learning  algorithmis to effectively train the 
model to achieve accurate classifications for 
unseen data. During the process of model 
training, the feature descriptors extracted 
from the training dataset, along with their 
corresponding class labels (response variable: 
positive or negative), are fed into an ML 
classifier. In this stage, the classifier learns 
the underlying relationships between the 
feature descriptors (x) and the response 
variable (y). Consequently, the trained model 
becomes capable of making predictions for 
new, previously unseen datasets. The 
fundamental objective of a proficient machine 
learning (ML) model is to extrapolate its 
learning from the training dataset to external, 
independent datasets[32]. In the realm of 
computational biology and bioinformatics, a 
variety of classifiers are frequently employed. 
These encompass AdaBoost (AB), Artificial 
Neural Networks (ANN), Deep Learning (DL), 
Extreme Learning Machine (ELM), Extremely 
Randomized Tree (ERT), Gradient Boosting 

(GB), k-Nearest Neighbor (KNN), Random 
Forest (RF), Support Vector Machine (SVM), 
and Extreme Gradient Boosting (XGB). The 
operational principles and applications of 
these machine learning classifiers have been 
elucidated in previous studies[33]. Indeed, each 
classifier comes with its own set of strengths 
and limitations, particularly in the context of 
data quantity, training speed, and feature 
encodings. The choice of classifier should be 
tailored to the specific characteristics of the 
dataset and the objectives of the analysis 
[32]. Cross-validation techniques are essential 
tools to prevent the overfitting of machine 
learning models. They help ensure that the 
model's performance generalizes well to 
unseen data. Among these techniques, one 
commonly used approach is K-Fold 
Cross-Validation, which divides the dataset 
into k subsets or folds. The model is trained 
on k-1 folds and validated on the remaining 
fold, repeating this process k times to cover 
all folds. This provides a robust assessment 
of the model's performance across different 
data subsets. Stratified K-Fold 
Cross-Validation is particularly useful when 
dealing with imbalanced datasets. It ensures 
that each fold maintains a proportional 
representation of different classes, which 
helps prevent biased performance estimates. 
Leave-One-OutCross-
Validation (LOOCV) is an exhaustive technique 
where each data point is treated as validation 
once, with the rest used for training. This 
offers a thorough evaluation but can be 
computationally intensive for large datasets. 
Leave-P-Out Cross-Validation (LPOCV) strikes 
a balance by reserving p data points for 
validation while using the remaining for 
training. This approach manages 
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computational complexity while maintaining 
robust partitioning[34]. Once the model is 
constructed, it is crucial to conduct an 
independent evaluation to determine its 
performance and generalizability. Four 
commonly used evaluation metrics are 
Sensitivity (SN), Specificity (SP), Accuracy 
(ACC), and the Matthews Correlation 
Coefficient (MCC)[35]. These metrics are 
calculated using the following formulas:

Sensitivity (SN) = TP / (TP + FN)
Specificity (SP) = TN / (TN + FP)
Accuracy (ACC) = (TP + TN) / (TP + TN + FP 
+ FN)
Matthews Correlation Coefficient (MCC) = (TP 
* TN - FP * FN) / √ ((TP + FP) * (TP + FN) 
* (TN + FP) * (TN + FN))

Where TP represents true positives, TN is 
true negatives, FP is false positives, and FN 
is false negatives. These metrics provide a 
comprehensive understanding of the model's 
performance in terms of its ability to 
correctly classify positive and negative 
instances[3].

5. Web server development

Ideally, the refined predictive model along 
with the associated dataset should be made 
openly accessible, potentially through a 
dedicated web server infrastructure. Such an 
approach offers significant advantages for 
both experimentalists and computational 
researchers. By offering a web server 
interface, experimentalists can efficiently 
pinpoint potential peptide functions prior to 
embarking on resource-intensive experimental 

validation efforts. Concurrently, 
computational biologists can leverage this 
platform to cultivate sophisticated in silico 
prediction models[36]. The flowchart depicting 
the process of anticancerpeptide prediction 
using Machine Learning was illustrated in 
Fig1.

6. Conclusion

Anticancer peptides exhibit substantial 
promise in diverse realms, including 
apoptosis induction, cellular penetration, 
anti-inflammatory responses, and 
anti-angiogenic effects in both in vitro and in 
vivo contexts within cancer cells. While 
challenges persist in ACP-related 
investigations, the field boasts robust positive 
outcomes. Notably, computational 
methodologies employing Machine Learning 
andhybrid learning paradigms offer notable 
advantages in streamlining the identification 
of potent ACP candidates, reducing time and 
costs associated with pre-experimental 
phases. Moreover, prior to embarking on the 
resource-intensive journey of experimental 
validation encompassing biological 
functionality verification, optimization, 
preclinical assessments, and clinical trials for 
AI-predicted ACPs' therapeutic effects in 
cancer, the application of AI holds significant 
value in projecting diverse biological 
attributes of novel ACPs. Furthermore, 
acknowledging the limitations inherent in 
solitary cancer therapeutic modalities, an 
avenue to enhance efficacy emerges in the 
fusion of conventional therapies with the ACP 
strategy. This review serves to lay the 
groundwork for continued exploration into 
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the development of ACPs, rooted in cancer 
cell characteristics. It also aims to foster 
comprehension of AI-driven predictions and 
the potential of combinational therapeutic 
approaches in cancer treatment.

References

 [1] Ortega-García MB, Mesa A, Moya ELJ, 
Rueda B, Lopez-Ordoño G, García JÁ, et 
al. Uncovering Tumour Heterogeneity 
through PKR and nc886 Analysis in 
Metastatic  Colon Cancer Patients 
Treated with 5-FU-Based Chemotherapy. 
Cancers (Basel) 2020;12(2). 

 [2] Schaduangrat N, Nantasenamat C, 
Prachayasittikul V, Shoombuatong W. 
ACPred: A Computational Tool for the 
Prediction and Analysis of Anticancer  
Peptides. Molecules 2019;24(10). 

[3] Fosgerau K, Hoffmann T. Peptide 
therapeutics: current status and future 
directions. Drug Discov Today 
2015;20(1):122–8. 

 [4] Padhi A, Sengupta M, Sengupta S, 
Roehm KH, Sonawane A. Antimicrobial 
peptides and proteins in mycobacterial 
therapy: current status and  future 
prospects. Tuberculosis (Edinb) 
2014;94(4):363–73. 

 [5] Henninot A, Collins JC, Nuss JM. The 
Current State of Peptide Drug Discovery: 
Back to the Future? J Med Chem 
2018;61(4):1382–414. 

 [6] Deslouches B, Di YP. Antimicrobial 
peptides with selective antitumor 
mechanisms: prospect for  anticancer 
applications. Oncotarget 2017;8(28):46635–
51. 

 [7] Tyagi A, Kapoor P, Kumar R, Chaudhary 
K, Gautam A, Raghava GPS. In silico 
models for designing and discovering 
novel anticancer peptides. Sci Rep 
2013;3:2984. 

 [8] Manavalan B, Basith S, Shin TH, Choi S, 
Kim MO, Lee G. MLACP: 
machine-learning-based prediction of 
anticancer peptides. Oncotarget 
2017;8(44):77121–36. 

 [9] Manavalan B, Shin TH, Lee G. DHSpred: 
support-vector-machine-based human 
DNase I hypersensitive sites  prediction 
using the optimal features selected by 
random forest. Oncotarget 2018;9(2):1944
–56. 

 [10] Melo MN, Ferre R, Feliu L, Bardají E, 
Planas M, Castanho MARB. Prediction of 
antibacterial activity from 
physicochemical properties of  
antimicrobial peptides. PLoS One 
2011;6(12):e28549. 

 [11] Al-Benna S, Shai Y, Jacobsen F, 
Steinstraesser L. Oncolytic activities of 
host defense peptides. Int J Mol Sci 
2011;12(11):8027–51. 

 [12] Wang G, Li X, Wang Z. APD3: the 
antimicrobial peptide database as a tool 
for research and education. Nucleic 
Acids Res 2016;44(D1):D1087-93. 

 [13] Minkiewicz P, Iwaniak A, Darewicz M. 
BIOPEP-UWM Database of Bioactive 
Peptides: Current Opportunities. Int J Mol 
Sci 2019;20(23). 

 [14] Waghu FH, Gopi L, Barai RS, Ramteke 
P, Nizami B, Idicula-Thomas S. CAMP: 
Collection of sequences and structures of 
antimicrobial peptides. Nucleic Acids Res 
2014;42(Database issue):D1154-8. 

 [15] Tyagi A, Tuknait A, Anand P, Gupta S, 



Machine Learning Approaches for Anticancer Peptide Discovery: A Comprehensive Review

J. Chosun Natural Sci., Vol. 16, No. 4, 2023

119
Sharma M, Mathur D, et al. CancerPPD: 
a database of anticancer peptides and 
proteins. Nucleic Acids Res 
2015;43(Database issue):D837-43. 

 [16] Kang X, Dong F, Shi C, Liu S, Sun J, 
Chen J, et al. DRAMP 2.0, an updated 
data repository of antimicrobial peptides. 
Sci Data [Internet] 2019;6(1):148. Available 
f r o m : 
https://doi.org/10.1038/s41597-019-0154-
y

 [17] Zhao X, Wu H, Lu H, Li G, Huang Q. 
LAMP: A Database Linking Antimicrobial 
Peptides. PLoS One 2013;8(6):e66557. 

 [18] Liu F, Baggerman G, Schoofs L, Wets 
G. The construction of a bioactive 
peptide database in Metazoa. J Proteome 
Res 2008;7(9):4119–31. 

 [19] Singh S, Chaudhary K, Dhanda SK, 
Bhalla S, Usmani SS, Gautam A, et al. 
SATPdb: a database of structurally 
annotated therapeutic peptides. Nucleic 
Acids Res 2016;44(D1):D1119-26. 

 [20] Usmani SS, Bedi G, Samuel JS, Singh S, 
Kalra S, Kumar P, et al. THPdb: 
Database of FDA-approved peptide and 
protein therapeutics. PLoS One 
2017;12(7):e0181748. 

 [21] Chen W, Ding H, Feng P, Lin H, Chou 
KC. iACP: a sequence-based tool for 
identifying anticancer peptides. 
Oncotarget 2016;7(13):16895–909. 

 [22] Li FM, Wang XQ. Identifying anticancer 
peptides by using improved hybrid 
compositions. Sci Rep [Internet] 
2016;6(1):33910. Available from: 
https://doi.org/10.1038/srep33910

 [23] Akbar S, Hayat M, Iqbal M, Jan MA. 
iACP-GAEnsC: Evolutionary genetic 
algorithm based ensemble classification 

of  anticancer peptides by utilizing 
hybrid feature space. Artif Intell Med 
2017;79:62–70. 

 [24] Yu L, Jing R, Liu F, Luo J, Li 
Y.DeepACP: A Novel Computational 
Approach for Accurate Identification of 
Anticancer  Peptides by Deep Learning 
Algorithm. Mol Ther Nucleic Acids 
2020;22:862–70. 

 [25] Charoenkwan P, Chiangjong W, Lee VS, 
Nantasenamat C, Hasan MM, 
Shoombuatong W. Improved prediction 
and characterization of anticancer 
activities of peptides  using a novel 
flexible scoring card method. Sci Rep 
2021;11(1):3017. 

 [26] Hajisharifi Z, Piryaiee M, Mohammad 
Beigi M, Behbahani M, Mohabatkar H. 
Predicting anticancer peptides with 
Chou’s pseudo amino acid composition 
and  investigating their mutagenicity via 
Ames test. J Theor Biol 2014;341:34–40. 

 [27] Xu L, Liang G, Wang L, Liao C. A 
Novel Hybrid Sequence-Based Model for 
Identifying Anticancer Peptides. Genes 
(Basel) 2018;9(3). 

 [28] Boopathi V, Subramaniyam S, Malik A, 
Lee G, Manavalan B, Yang DC. 
mACPpred: A Support Vector 
Machine-Based Meta-Predictor for 
Identification of  Anticancer Peptides. Int 
J Mol Sci 2019;20(8). 

 [29] Li Q, Zhou W, Wang D, Wang S, Li Q. 
Prediction of Anticancer Peptides Using a 
Low-Dimensional Feature Model. Front 
Bioeng Biotechnol 2020;8:892. 

 [30] Akbar S, Hayat M, Tahir M, Khan S, 
Alarfaj FK. CACP-DeepGram: 
Classification of Anticancer Peptides via 
Deep Neural Network and 



Priya Dharshini

J. Chosun Natural Sci., Vol. 16, No. 4, 2023

120
Skip-Gram-Based Word Embedding 
Model. Artif Intell Med [Internet] 
2022;131(C). Available from: 
https://doi.org/10.1016/j.artmed.2022.1023
49

 [31] Agrawal P, Bhagat D, Mahalwal M, 
Sharma N, Raghava GPS. AntiCP 2.0: an 
updated model for predicting anticancer 
peptides. Brief Bioinform 2021;22(3). 

 [32] Vamathevan J, Clark D, Czodrowski P, 
Dunham I, Ferran E, Lee G, et al. 
Applications of machine learning in drug 
discovery and development. Nat Rev 
Drug Discov 2019;18(6):463–77. 

 [33] Li F, Chen J, Leier A, Marquez-Lago T, 
Liu Q, Wang Y, et al. DeepCleave: a deep 
learning predictor for caspase and 
matrix metalloprotease  substrates and 
cleavage sites. Bioinformatics 
2020;36(4):1057–65. 

 [34] Mei S, Li F, Leier A, Marquez-Lago TT, 
Giam K, Croft NP, et al. A 
comprehensive review and performance 
evaluation of bioinformatics tools for 
HLA  class I peptide-binding prediction. 
Brief Bioinform 2020;21(4):1119–35. 

[35] Cao R, Adhikari B, Bhattacharya D, 
Sun M, Hou J, Cheng J. QAcon: single 
model quality assessment using protein 
structural and contact  information with 
machine learning techniques. 
Bioinformatics 2017;33(4):586–8. 

[36] Schaduangrat N, Nantasenamat C, 
Prachayasittikul V, Shoombuatong W. 
Meta-iAVP: A Sequence-Based 
Meta-Predictor for Improving the 
Prediction of  Antiviral Peptides Using 
Effective Feature Representation. Int J 

Mol Sci 2019;20(22). 



Machine Learning Approaches for Anticancer Peptide Discovery: A Comprehensive Review

J. Chosun Natural Sci., Vol. 16, No. 4, 2023

121
Table. 1. Comprehensive overview of various studies focusing on Anticancer Peptide (ACP) prediction

Predictor Classifier Feature encodings Contributions Reference
Chen et 
al

SVM PseACC, g-gap 
dipeptide

Improved G-Gap DPC 
framework

(20)

Manavala
n et al

SVM, RFT AAC, DPC, ATC, 
and PCP

Composite feature set (21)

Tyagi et 
al

SVM Binary profile, DPC Tree-based encoding (22)

Li et al SVM ReduceAAC, AAC, 
average chemical shift

Enhancing feature 
selection

(23)

Akbar et 
al

SVM, 
KNN, PNN, 
RF, GRNN

PAAC, RAAC, g-gap 
dipeptide

Hybrid feature encoding (24)

Kabir et 
al

SVM, 
KNN, PNN

Pseudo position 
specific scoring matrix, 

Composite protein 
sequence, Split-AAC

Diverse sequence 
encoding

(25)

Kumar et 
al

SVM, 
AdaBoost

Protein relatedness 
measure

Protein relatedness 
analysis

(26)

Hajisharifi 
et al

SVM PAAC, Local 
alignment kernel

Local alignment-based 
encoding

(27)

Xu et al SVM g-gap dipeptide g-gap DPC approach (28)

Boopathi 
et al

SVM, LR, 
KNN, RF

Composition-based, 
physicochemical 

properties and profiles

Multi-dimensional 
encoding

(29)

Li et al SVM, 
RFT, LibD3C

AAC, Conjoint triad, 
PAAC, GAAC

Comprehensive peptide 
features

(30)

Akbar et 
al

SVM, 
RFT, FKNN

K-space amino acid 
pair,

Composite 
physiochemical 
properties, auto 

covariance,

Correlated feature 
extraction

(31)

Agrawal 
et al

Tree 
based

AAC, DPC, Terminus 
composition, binary 

profile

Combination of 
descriptors

(32)
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Nomenclature

AAC Amino acid composition
PseAAC Pseudo amino acid 

composition
DPC Dipeptide composition

ATC Atomic composition
PCP physicochemical 

properties
PAAC Pseudo-amino acid 

composition
GAAC Grouped amino acid 

composition
RF Random Forest
SVM Support vector machine

KNN K-nearest Neighbor
PNN Probabilistic neural 

network
GRNN Generalize regression 

neural network

Fig. 1. Flowchart of Anticancer peptide prediction using Machine learning




