DOI QR코드

DOI QR Code

Evaluation of thermal-hydro-mechanical behavior of bentonite buffer under heating-hydration condition at disposal hole

처분공 가열-수화 조건에서 벤토나이트 완충재의 열-수리-역학적 거동 특성 평가

  • Yohan Cha (Disposal Performance Demonstration R&D Division, KAERI) ;
  • Changsoo Lee (Disposal Safety Evaluation R&D Division, KAERI) ;
  • Jin-Seop Kim (Disposal Performance Demonstration R&D Division, KAERI) ;
  • Minhyeong Lee (Disposal Performance Demonstration R&D Division, KAERI)
  • 차요한 (한국원자력연구원 저장처분성능검증부) ;
  • 이창수 (한국원자력연구원 저장처분기술개발부) ;
  • 김진섭 (한국원자력연구원 저장처분성능검증부) ;
  • 이민형 (한국원자력연구원 저장처분성능검증부)
  • Received : 2023.03.10
  • Accepted : 2023.03.22
  • Published : 2023.03.31

Abstract

The buffer materials in disposal hole are exposed to the decay heat from spent nuclear fuels and groundwater inflow through adjacent rockmass. Since understanding of thermal-hydro-mechanical-chemical (T-H-M-C) interaction in buffer material is crucial for predicting their long-term performance and safety of disposal repository, it is necessary to investigate the heating-hydration characteristics and consequent T-H-M-C behavior of the buffer materials under disposal conditions considering geochemical factors. In response, the Korea Atomic Energy Research Institute developed a laboratory-scale 'Lab.THMC' experiment system, which characterizes the T-H-M behavior of buffer materials under different geochemical conditions by analyzing heating-hydration process and stress changes. This technical report introduces the detail design of the Lab.THMC system, summarizes preliminary experimental results, and outlines future research plans.

처분공 내에 위치한 완충재는 사용후핵연료로부터 발산된 고온의 붕괴열과 지하수에 노출되며, 이와 같은 가열-수화를 포함한 처분환경 하의 완충재의 열-수리-역학-화학적 상호작용은 완충재의 장기적 성능과 건전성에 핵심적으로 작용하는 것으로 알려져 있다. 따라서 본 연구에서는 처분환경 조건에서 완충재의 가열-수화 특성 및 지하수 지화학 조건을 고려한 벤토나이트의 열-수리-역학-화학적(Thermal-Hydraulic-Mechanical-Chemical, 이하 THMC) 복합거동 특성 규명을 위한 실험실 규모의 Lab.THMC 실험시스템을 개발하였다. 본 실험시스템은 스페인 CIEMAT의 열-수리-역학 복합거동 실험장치를 토대로 개발되었으며, 화학적 특성을 달리한 지하수 주입 조건에서 벤토나이트 완충재의 가열-수화 특성을 파악하고 응력 변화를 계측함으로써 열-수리-화학적 변화에 따른 역학적 성능 변화 특성을 규명하는 것을 목표로 한다. 본 기술논문에서는 개발된 Lab.THMC 실험시스템의 설계 및 구성을 간략하게 소개하고, 장치 검토 및 주요 변수설정을 위해 수행된 예비실험 결과와 차후 연구계획에 대해 정리하였다.

Keywords

Acknowledgement

본 연구는 2023년도 과학기술정보통신부의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원(2021M2E1A1085193)을 받아 수행되었으며, 이에 깊은 감사의 말씀을 드립니다.

References

  1. Ballarini, E., Graupner, B., Bauer, S. (2017), "Thermal-hydraulic-mechanical behavior of bentonite and sand-bentonite materials as seal for a nuclear waste repository: numerical simulation of column experiments", Applied Clay Science, Vol. 135, pp. 289-299. https://doi.org/10.1016/j.clay.2016.10.007
  2. Cho, W.J., Lee, J.O., Kwon, S.K. (2010), "A correlation to predict the thermal conductivity of buffer and backfill material for a high-level waste repository", Tunnel and Underground Space, Vol. 20, No. 4, pp. 284-291.
  3. Gaus, I., Wieczorek, K., Schuster, K., Garitte, B., Senger, R., Vasconcelos, R., Mayor, J.C. (2014), "EBS behaviour immediately after repository closure in a clay host rock: HE-E experiment (Mont Terri URL)", Geological Society, London, Special Publications, Vol. 400, No. 1, pp. 71-91. https://doi.org/10.1144/SP400.11
  4. Johnson, L.H., Niemeyer, M., Klubertanz, G., Siegel, P., Gribi, P. (2002), Calculations of the temperature evolution of a repository for spent fuel, vitrified high-level waste and intermediate level waste in Opalinus Clay, No. NTB--01-04, NAGRA Arbeitsbericht, pp. 1-80.
  5. Kim, K.I., Lee, C., Kim, J.S. (2021), A numerical study of the performance assessment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste, Tunnel and Underground Space, Vol. 31, No. 4, pp. 221-242. https://doi.org/10.7474/TUS.2021.31.4.221
  6. Lee, J.O., Choi, Y.C., Kim, J.S., Choi, H.J. (2014), R&D review on the gap fill of an engineered barrier for an HLW repository, Tunnel and Underground Space, Vol. 24, No. 6, pp. 405-417. https://doi.org/10.7474/TUS.2014.24.6.405
  7. Lee, J.O., Kim, J.S. (2022), Reference design for engineering-scale buffer block manufacturing, No. KAE RI/TR-9418/2022, Korea Atomic Energy Research Institute (KAERI), pp. 1-50.
  8. Plotze, M., Weber, H.P. (2007), ESDRED: Emplacement tests with granular bentonite MX-80: Laboratory Results from ETH Zurich, No. NAB 07-24, NAGRA Arbeitsbericht, pp. 1-10.
  9. Pusch, R. (2008), Geological Storage of Highly Radioactive Waste, Springer Berlin, Heidelberg, Germany.
  10. Teodori, S.P., Gaus, I. (2011), Long-term performance of engineered barrier systems (PEBS), Mont Terri HE-E Experiment: as built report, No. NAB 11-25, NAGRA Arbeitsbericht, pp. 1-125.
  11. Villar, M.V., Martin, P.L., Barcala, J.M. (2005), Infiltration tests at isothermal conditions and under thermal gradient, No. CIEMAT/DMA/M2140/1/05, Centre for Energy, Environmental and Technological Research (CIEMAT), pp. 1-24.
  12. Villar, M.V., Martin, P.L., Gomez-Espina, R., Romero, F.J., Barcala, J.M. (2012), THM cells for the HE-E test: setup and first results, No. CEMAT/DMA/2G21/02/2012, Centre for Energy, Environmental and Technological Research (CIEMAT), pp. 1-34.
  13. Villar, M.V., Sanchez, M., Gens, A. (2008), "Behaviour of a bentonite barrier in the laboratory: experimental results up to 8 years and numerical simulation", Physics and Chemistry of the Earth, Parts A/B/C, Vol. 33, pp. S476-S485.  https://doi.org/10.1016/j.pce.2008.10.055