DOI QR코드

DOI QR Code

True coincidence summing correction factor for point source geometry with PHITS

  • Esra Uyar (Gazi University, Faculty of Sciences, Department of Physics)
  • Received : 2023.04.11
  • Accepted : 2023.08.16
  • Published : 2023.12.25

Abstract

In this study, it has been shown that the true coincidence summing correction factor can be obtained for the first time using the PHITS Monte Carlo program. Determining this correction factor using different methods and tools in each laboratory to increase the possibility of achieving high-efficiency measurement conditions is still popular in gamma-ray spectrometry. By using 133Ba, 152Eu, 134Cs, and 60Co point sources, the true coincidence summing factor was investigated in both near and far counting geometries for 15 different energy values. GESPECOR software was used to validate the results obtained with PHITS. A remarkable agreement was obtained between PHITS and GESPECOR, with a discrepancy of less than 3%. With this study, a new tool has been proposed to obtain the true coincidence summing factor, which is one of the significant correction factors investigated/calculated in gamma-ray spectrometric studies.

Keywords

Acknowledgement

Experimental measurements of this study were carried out at the Turkish Energy, Nuclear and Mining Research Authority (TENMAK), Nuclear Energy Research Institute, Gama Spectroscopy Laboratory within the scope of the cooperation protocol signed between TENMAK and Gazi University Faculty of Science. The author wants to express her sincere thanks to Hasan Dikmen from TENMAK for his sharing of information on coincidence summing correction and to the PHITS Office for valuable suggestions.

References

  1. J. Knezevic, D. Mrdja, J. Hansman, K. Bikit, S. Forkapic, I. Bikit, D. Velimirovic, P. Kuzmanovic, Corrections of HPGe detector efficiency curve due to true coincidence summing by program EFFTRAN and by Monte Carlo simulations, Appl. Radiat. Isot. 189 (2022), 110421, https://doi.org/10.1016/j.apradiso.2022.110421. 
  2. J. Lee, H.J. Kim, Y.U. Kye, D.Y. Lee, J.K. Kim, W.S. Jo, Y.R. Kang, Source and LVis based coincidence summing correction in HPGe gamma-ray spectrometry, Nucl. Eng. Technol. 54 (2022) 1754-1759, https://doi.org/10.1016/j.net.2021.11.008. 
  3. O. Sima, Efficiency calculation of gamma detectors by Monte Carlo methods, encyclopedia of analytical chemistry. https://doi.org/10.1002/9780470027318.a9142, 2012. 
  4. D. Novkovic, A. Kandic, M. Durasevic, I. Vukanac, Z. Milosevic, L. Nadderd, Coincidence summing of X- and γ-rays in γ-ray spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 578 (2007) 207-217, https://doi.org/10.1016/j.nima.2007.05.199. 
  5. J.G. Guerra, J.G. Rubiano, G. Winter, A.G. Guerra, H. Alonso, M.A. Arnedo, A. Tejera, P. Martel, J.P. Bolivar, Modeling of a HPGe well detector using PENELOPE for the calculation of full energy peak efficiencies for environmental samples, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 908 (2018) 206-214, https://doi.org/10.1016/j.nima.2018.08.048. 
  6. O. Sima, A. De Vismes Ott, M.S. Dias, P. Dryak, L. Ferreux, D. Gurau, S. Hurtado, P. Jodlowski, K. Karfopoulos, M.F. Koskinas, M. Laubenstein, Y.K. Lee, M.C. Lepy, A. Luca, M.O. Menezes, D.S. Moreira, J. Nikolic, V. Peyres, P. Saganowski, M. I. Savva, R. Semmler, J. Solc, T.T. Thanh, K. Tyminska, Z. Tyminski, T. Vidmar, I. Vukanac, H. Yucel, Consistency test of coincidence-summing calculation methods for extended sources, Appl. Radiat. Isot. 155 (2020), https://doi.org/10.1016/j.apradiso.2019.108921. 
  7. M.C. Lepy, T. Altzitzoglou, M.J. Anagnostakis, D. Arnold, M. Capogni, A. Ceccatelli, P. De Felice, R. Dersch, P. Dryak, A. Fazio, L. Ferreux, M. Guardati, J.B. Han, S. Hurtado, K.L. Karfopoulos, S. Klemola, P. Kovar, K.B. Lee, R. Ocone, O. Ott, O. Sima, S. Sudar, A. Svec, C. Van Tao, T.T. Thanh, T. Vidmar, Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry, Appl. Radiat. Isot. 68 (2010) 1407-1412, https://doi.org/10.1016/j.apradiso.2010.01.012. 
  8. M.C. Lepy, T. Altzitzoglou, M.J. Anagnostakis, M. Capogni, A. Ceccatelli, P. De Felice, M. Djurasevic, P. Dryak, A. Fazio, L. Ferreux, A. Giampaoli, J.B. Han, S. Hurtado, A. Kandic, G. Kanisch, K.L. Karfopoulos, S. Klemola, P. Kovar, M. Laubenstein, J.H. Lee, J.M. Lee, K.B. Lee, S. Pierre, G. Carvalhal, O. Sima, C. Van Tao, T. Thien Thanh, T. Vidmar, I. Vukanac, M.J. Yang, Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry-part II (volume sources), Appl. Radiat. Isot. 70 (2012) 2112-2118, https://doi.org/10.1016/j.apradiso.2012.02.079. 
  9. F. Piton, M.C. Lepy, M.M. Be, J. Plagnard, Efficiency transfer and coincidence summing corrections for γ-ray spectrometry, Appl. Radiat. Isot. 52 (2000) 791-795, https://doi.org/10.1016/S0969-8043(99)00246-8. 
  10. M.C. Lepy, P. Brun, C. Collin, J. Plagnard, Experimental validation of coincidence summing corrections computed by the ETNA software, Appl. Radiat. Isot. 64 (2006) 1340-1345, https://doi.org/10.1016/j.apradiso.2006.02.042. 
  11. O. Sima, D. Arnold, Accurate computation of coincidence summing corrections in low level gamma-ray spectrometry, Appl. Radiat. Isot. 53 (2000) 51-56, https://doi.org/10.1016/S0969-8043(00)00113-5. 
  12. O. Sima, D. Arnold, C. Dovlete, GESPECOR: a versatile tool in gamma-ray spectrometry, J. Radioanal. Nucl. Chem. 248 (2001) 359-364, https://doi.org/10.1023/A:1010619806898. 
  13. D. Arnold, O. Sima, Calculation of coincidence summing corrections for X-ray peaks and for sum peaks with X-ray contributions, Appl. Radiat. Isot. 64 (2006) 1297-1302, https://doi.org/10.1016/j.apradiso.2006.02.051. 
  14. O. Sima, D. Arnold, A tool for processing decay scheme data that encompasses coincidence summing calculations, Appl. Radiat. Isot. 66 (2008) 705-710, https://doi.org/10.1016/j.apradiso.2008.02.007. 
  15. E.T. Yoon, M.Y. Kang, I.J. Kim, G.M. Sun, H.D. Choi, Coincidence summing correction for a voluminous 152Eu source, Nucl. Eng. Technol. 52 (2020) 1266-1270, https://doi.org/10.1016/j.net.2019.11.015. 
  16. S. Sudar, "TRUECOINC", A software utility for calculation of the true coincidence correction, IAEA-Tecdoc 1275 (2002) 37-48. http://inis.iaea.org/search/search.aspx?orig_q=RN:33017174. 
  17. J. Ordonez, S. Gallardo, J. Ortiz, S. Martorell, Coincidence summing correction factors for 238U and 232Th decay series using the Monte Carlo method, Radiat. Phys. Chem. 155 (2019) 244-247, https://doi.org/10.1016/j.radphyschem.2018.09.013. 
  18. H. Yucel, A.N. Solmaz, E. Kose, D. Bor, True coincidence-summing corrections for the coincident γ-rays measured with coplanar grid CdZnTe detectors, Appl. Radiat. Isot. 68 (2010) 1040-1048, https://doi.org/10.1016/j.apradiso.2010.01.042. 
  19. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, Inc, 2010, https://doi.org/10.4274/nts.018. 
  20. M.H. Bolukdemir, E. Uyar, G. Aksoy, H. unlu, H. Dikmen, M. Ozgur, Investigation of shape effects and dead layer thicknesses of a coaxial HPGe crystal on detector efficiency by using PHITS Monte Carlo simulation.pdf, Radiat. Phys. Chem. 189 (2021), 109746, https://doi.org/10.1016/j.radphyschem.2021.109746. 
  21. GammaVision, Gamma-Ray Spectrum Analysis and MCA Emulation for; Software User's Manual; Version 32; V5.10.. 
  22. T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. ichiro Abe, T. Kai, P. E. Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, K. Niita, Features of particle and Heavy ion transport code system (PHITS) version 3.02, J. Nucl. Sci. Technol. 55 (2018) 684-690, https://doi.org/10.1080/00223131.2017.1419890. 
  23. O. Sima, D. Arnold, On the Monte Carlo simulation of HPGe gamma-spectrometry systems, Appl. Radiat. Isot. 67 (2009) 701-705, https://doi.org/10.1016/j.apradiso.2009.01.014. 
  24. DDEP, Decay Data Evaluation Project-Recommended Data, Laboratoire National Henri Becquerel (LNHB), 2023. http://www.lnhb.fr/nuclear-data/module-lara/.accessed January 15, 2023.