DOI QR코드

DOI QR Code

강유전체 Hf0.5Zr0.5O2 박막의 퍼니스 어닐링 효과 연구

Furnace Annealing Effect on Ferroelectric Hf0.5Zr0.5O2 Thin Films

  • 조민관 (강원대학교 전기전자공학과) ;
  • 유정규 (강원대학교 전기전자공학과) ;
  • 박혜련 (강원대학교 BIT의료융합학과) ;
  • 강종묵 (강원대학교 전기전자공학과) ;
  • 공태호 (강원대학교 전기전자공학과) ;
  • 정용찬 (텍사스대학교 재료공학과) ;
  • 김지영 (텍사스대학교 재료공학과) ;
  • 김시준 (강원대학교 전기전자공학과)
  • Min Kwan, Cho (Department of Electrical and Electronics Engineering, Kangwon National University) ;
  • Jeong Gyu, Yoo (Department of Electrical and Electronics Engineering, Kangwon National University) ;
  • Hye Ryeon, Park (Department of BIT Medical Convergence, Kangwon National University) ;
  • Jong Mook, Kang (Department of Electrical and Electronics Engineering, Kangwon National University) ;
  • Taeho, Gong (Department of Electrical and Electronics Engineering, Kangwon National University) ;
  • Yong Chan, Jung (Department of Materials Science and Engineering, The University of Texas at Dallas) ;
  • Jiyoung, Kim (Department of Materials Science and Engineering, The University of Texas at Dallas) ;
  • Si Joon, Kim (Department of Electrical and Electronics Engineering, Kangwon National University)
  • 투고 : 2022.08.30
  • 심사 : 2022.09.15
  • 발행 : 2023.01.01

초록

The ferroelectricity in Hf0.5Zr0.5O2 (HZO) thin films is one of the most interesting topics for next-generation nonvolatile memory applications. It is known that a crystallization process is required at a temperature of 400℃ or higher to form an orthorhombic phase that results in the ferroelectric properties of the HZO film. However, to realize the integration of ferroelectric HZO films in the back-end-of-line, it is necessary to reduce the annealing temperature below 400℃. This study aims to comprehensively analyze the ferroelectric properties according to the annealing temperature (350-500℃) and time (1-5 h) using a furnace as a crystallization method for HZO films. As a result, the ferroelectric behaviors of the HZO films were achieved at a temperature of 400℃ or higher regardless of the annealing time. At the annealing temperature of 350℃, the ferroelectric properties appeared only when the annealing time was sufficiently increased (4 h or more). Based on these results, it was experimentally confirmed that the optimization of the annealing temperature and time is very important for the ferroelectric phase crystallization of HZO films and the improvement of their ferroelectric properties.

키워드

과제정보

이 연구는 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임 (P0017011 및 P0020966, 2022년 산업혁신인재성장지원사업).

참고문헌

  1. J. A. Rodriguez, C. Zhou, T. Graf, R. Bailey, M. Wiegand, T. Wang, M. Ball, H. C. Wen, K. R. Udayakumar, S. Summerfelt, T. San, and T. Moise, 2016 IEEE 8th International Memory Workshop (IMW). (Paris, France, 2016) pp. 15-18. [DOI: https://doi.org/10.1109/IMW.2016.7495274]
  2. T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, and U. Bottger, Appl. Phys. Lett., 99, 102903 (2011). [DOI: https://doi.org/10.1063/1.3634052]
  3. M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, Adv. Mater., 27, 1811 (2015). [DOI: https://doi.org/10.1002/adma.201404531]
  4. S. J. Kim, J. Mohan, S. R. Summerfelt, and J. Kim, JOM, 71, 246 (2019). [DOI: https://doi.org/10.1007/s11837-018-3140-5]
  5. H. J. Kim, Y. An, Y. C. Jung, J. Mohan, J. G. Yoo, Y. I. Kim, H. Hernandez-Arriaga, H. S. Kim, J. Kim, and S. J. Kim, Phys. Status Solidi RRL, 15, 2100028 (2021). [DOI: https://doi.org/10.1002/pssr.202100028]
  6. H. A. Hsain, Y. Lee, M. Materano, T. Mittmann, A. Payne, T. Mikolajick, U. Schroeder, G. N. Parsons, and J. L. Jones, J. Vac. Sci. Technol. A, 40, 010803 (2022). [DOI: https://doi.org/10.1116/6.0001317]
  7. H. Chen, X. Zhou, L. Tang, Y. Chen, H. Luo, X. Yuan, C. R. Bowen, and D. Zhang, Appl. Phys. Rev., 9, 011307 (2022). [DOI: https://doi.org/10.1063/5.0066607]
  8. S. J. Kim, D. Narayan, J.-G. Lee, J. Mohan, J. S. Lee, J. Lee, H. S. Kim, Y.-C. Byun, A. T. Lucero, C. D. Young, S. R. Summerfelt, T. San, L. Colombo, and J. Kim, Appl. Phys. Lett., 111, 242901 (2017). [DOI: https://doi.org/10.1063/1.4995619]
  9. B. Y. Kim, H. W. Park, S. D. Hyun, Y. B. Lee, S. H. Lee, M. Oh, S. K. Ryoo, I. S. Lee, S. Byun, D. Shim, D.-Y. Cho, M. H. Park, and C. S. Hwang, Adv. Electron. Mater., 8, 2100042 (2022). [DOI: https://doi.org/10.1002/aelm.202100042]
  10. J. Mohan, H. Hernandez-Arriaga, Y. C. Jung, T. Onaya, C.-Y. Nam, E.H.R. Tsai, S. J. Kim, and J. Kim, Appl. Phys. Lett., 118, 102903 (2021). [DOI: https://doi.org/10.1063/5.0035579]
  11. T. Onaya, T. Nabatame, N. Sawamoto, A. Ohi, N. Ikeda, T. Nagata, and A. Ogura, Microelectron. Eng., 215, 111013 (2019). [DOI: https://doi.org/10.1016/j.mee.2019.111013]
  12. S. J. Kim, Y. C. Jung, J. Mohan, H. J. Kim, S. M. Rho, M. S. Kim, J. G. Yoo, H. R. Park, H. Hernandez-Arriaga, J.-H. Kim, H. T. Kim, D. H. Choi, J. Jung, S. M. Hwang, H. S. Kim, H. J. Kim, and J. Kim, Appl. Phys. Lett., 119, 242901 (2021). [DOI: https://doi.org/10.1063/5.0075466]
  13. S. Migita, H. Ota, K. Shibuya, H. Yamada, A. Sawa, T. Matsukawa, and A. Toriumi, Jpn. J. Appl. Phys., 58, SBBA07 (2019). [DOI: https://doi.org/10.7567/1347-4065/ab00f6]
  14. D. Lehninger, T. Ali, R. Olivo, M. Lederer, T. Kampfe, K. Mertens, and K. Seidel, 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF) (Keystone, CO, USA, 2020) pp. 19-23. [DOI: https://doi.org/10.1109/IFCS-ISAF41089.2020.9234879]
  15. S. J. Kim, J. Mohan, H. S. Kim, S. M. Hwang, N. Kim, Y. C. Jung, A. Sahota, K. Kim, H.-Y. Yu, P.-R. Cha, C. D. Young, R. Choi, J. Ahn, and J. Kim, Materials, 13, 2968 (2020). [DOI: https://doi.org/10.3390/ma13132968]
  16. International Roadmap for Devices and Systems (IRDS), 2020.
  17. S. J. Kim, J. Mohan, J. Lee, J. S. Lee, A. T. Lucero, C. D. Young, L. Colombo, S. R. Summerfelt, T. San, and J. Kim, Appl. Phys. Lett., 112, 172902 (2018). [DOI: https://doi.org/10.1063/1.5026715]
  18. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, and C. S. Hwang, J. Mater. Chem. C, 3, 6291 (2015). [DOI: https://doi.org/10.1039/C5TC01074H]
  19. J. Hur, N. Tasneem, G. Choe, P. Wang, Z. Wang, A. I. Khan, and S. Yu, Nanotechnology, 31, 505707 (2020). [DOI: https://doi.org/10.1088/1361-6528/aba5b7]
  20. S. J. Kim, J. Mohan, H. S. Kim, J. Lee, S. M. Hwang, D. Narayan, J.-G. Lee, C. D. Young, L. Colombo, G. Goodman, A. S. Wan, P.-R. Cha, S. R. Summerfelt, T. San, and J. Kim, Appl. Phys. Lett., 115, 182901 (2019). [DOI: https://doi.org/10.1063/1.5126144]
  21. Y. Xu, Y. Yang, S. Zhao, T. Gong, P. Jiang, S. Lv, H. Yu, P. Yuan, Z. Dang, Y. Ding, Y. Wang, Y. Chen, Y. Wang, J. Bi, and Q. Luo, IEEE Trans. Electron Devices, 69, 430 (2022). [DOI: https://doi.org/10.1109/TED.2021.3126283]