DOI QR코드

DOI QR Code

Anti-thrombotic effect of artemisinin through regulation of cAMP production and Ca2+ mobilization in U46619-induced human platelets

U46619 유도의 사람 혈소판에서 cAMP 생성 및 Ca2+동원의 조절을 통한 Artemisinin의 항혈전 효과

  • Chang-Eun Park (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University) ;
  • Dong-Ha Lee (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University)
  • Received : 2023.08.17
  • Accepted : 2023.10.10
  • Published : 2023.12.31

Abstract

The regulation of platelet aggregation is crucial for maintaining normal hemostasis, but abnormal or excessive platelet aggregation can contribute to cardiovascular disorders such as stroke, atherosclerosis, and thrombosis. Therefore, identifying substances that can control or suppress platelet aggregation is a promising approach for the prevention and treatment of these conditions. Artemisinin, a compound derived from Artemisia or Scopolia plants, has shown potential in various areas such as anticancer and Alzheimer's disease research. However, the specific role and mechanisms by which artemisinin influences platelet activation and thrombus formation are not yet fully understood. This study investigated the effects of artemisinin on platelet activation and thrombus formation. As a result, cAMP production were increased significantly by artemisinin, as well as phosphorylated VASP and IP3R which are substrates to cAMP-dependent kinase by artemisinin in a significant manner. The Ca2+ normally mobilized from the dense tubular system was inhibited due to IP3R phosphorylation from artemisinin, and phosphorylated VASP by artemisinin aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. Finally, artemisinin inhibited thrombin-induced thrombus formation. Therefore, we suggest that artemisinin has importance with cardiovascular diseases stemming from the abnormal platelets activation and thrombus formation by acting as an effective prophylactic and therapeutic agent.

혈소판 응집의 조절은 정상적인 지혈을 유지하는 데 중요하지만 비정상적이거나 과도한 혈소판 응집은 뇌졸중, 죽상동맥 경화증 및 혈전증과 같은 심혈관 질환에 기여할 수 있다. 따라서 혈소판 응집을 제어하거나 억제할 수 있는 물질을 식별하는 것은 이러한 상태의 예방 및 치료를 위한 유망한 접근 방식이다. Artemisia 또는 Scopolia 속 식물에서 추출한 artemisinin은 항암 및 알츠하이머병 연구와 같은 다양한 분야에서 가능성을 보여주었다. 그러나 artemisinin이 혈소판 활성화 및 혈전 형성에 영향을 미치는 구체적인 역할과 메커니즘은 아직 완전히 밝혀지지 않았다. 이 연구는 혈소판 활성화 및 혈전 형성에 대한 artemisinin의 효과를 조사하였다. 그 결과, cAMP 생성과 cAMP 의존성 kinase에 대한 기질인 VASP 및 IP3R의 인산화가 artemisinin에 의해 유의미하게 증가되었다. IP3R의 인산화는 조밀한 관형 시스템에서 정상적으로 동원되는 Ca2+를 억제하였고, VASP의 인산화는 αIIb/β3 혈소판 막 불활성화를 통한 fibrinogen 결합을 억제하였다. 마지막으로, artemisinin은 thrombin이 유발하는 혈전 형성을 농도의존적으로 억제하였다. 따라서 우리는 artemisinin이 혈소판 활성화의 효과적인 예방 및 치료제로 작용하여 비정상적인 혈소판 응집 및 혈전 형성으로 인해 유발되는 심혈관 질환의 개선에 기여할 수 있음을 제안한다.

Keywords

Acknowledgement

Funding for this paper was provided by Namseoul University year 2023.

References

  1. Xia Q, Wang X, Xu DJ, Chen XH, Chen FH (2012) Inhibition of platelet aggregation by curdione from Curcuma wenyujin essential Oil. Thromb Res 130: 409-414. doi: 10.1016/j.thromres.2012.04.005 
  2. Lee DS, Kim TH, Jung YS (2014) Inhibitory effect of allyl isothiocyanate on platelet aggregation. J Agric Food Chem 62: 7131-7139. doi: 10.1021/jf4041518 
  3. Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8: 1227-1234. doi: 10.1038/nm1102-1227 
  4. Bassand JP (2013) Current antithrombotic agents for acute coronary syndromes: focus on bleeding risk. Int J Cardiol 163: 5-18. doi: 10.1016/j.ijcard.2011.10.104 
  5. Vaiyapuri S, Ali MS, Moraes LA, Sage T, Lewis KR, Jones CI, Gibbins JM (2013) Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling. Arterioscler Thromb Vasc Biol 33: 2740-2749. doi: 10.1161/ATVBAHA.113.301988 
  6. Barrett NE, Holbrook L, Jones S, Kaiser WJ, Moraes LA, Rana R, Sage T, Stanley RG, Tucker KL, Wright B, Gibbins JM (2008) Future innovations in anti-platelet therapies. Br J Pharmacol 154: 918-939. doi: 10.1038/bjp.2008.151 
  7. Yao Y, Guo Q, Cao Y, Qiu Y, Tan R, Yu Z (2018) Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J Exp Clin Cancer Res 37: 282. doi: 10.1186/s13046-018-0960-7 
  8. Wong YK, Xu C, Kalesh KA, He Y, Lin Q, Wong WSF (2017) Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med Res Rev 37: 1492-1517. doi: 10.1002/med.21446 
  9. Wang KS, Li J, Wang Z, Mi C, Ma J, Piao LX, Xu GH, Li X, Jin X (2017) Artemisinin inhibits inflammatory response via regulating NF-κB and MAPK signaling pathways. Immunopharmacol Immunotoxicol 39: 28-36. doi: 10.1080/08923973.2016.1267744 
  10. Xu G, Huang YL, Li PL, Guo HM, Han XP (2017) Neuroprotective effects of artemisinin against isoflurane-induced cognitive impairments and neuronal cell death involve JNK/ERK1/2 signalling and improved hippocampal histone acetylation in neonatal rats. J Pharm Pharmacol 69: 684-697. doi: 10.1111/jphp.12704 
  11. Zeng Z, Xu J, Zheng W (2017) Artemisinin protects PC12 cells against beta-amyloid-induced apoptosis through activation of the ERK1/2 signaling pathway. Redox Biol 12: 625-633. doi: 10.1016/j.redox.2017.04.003 
  12. Das SS, Nanda GG, Alone DP (2014) Artemisinin and curcumin inhibit Drosophila brain tumor, prolong life span, and restore locomotor activity. IUBMB life 66: 496-506. doi: 10.1002/iub.1284 
  13. Zhao X, Fang J, Li S, Gaur U, Xing X, Wang H (2019) Artemisinin Attenuated Hydrogen Peroxide (H2O2)-Induced Oxidative Injury in SH-SY5Y and Hippocampal Neurons via the Activation of AMPK Pathway. Int J Mol Sci 20: 2680. doi: 10.3390/ijms20112680 
  14. Fang J, Zhao X, Li S, Xing X, Wang H, Lazarovici P, Zheng W (2019) Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90(rsk)-CREB pathway. Stem Cell Res Ther 10: 312. doi: 10.1186/s13287-019-1419-2 
  15. Peng T, Li S, Liu L, Yang C, Farhan M, Chen L, Su Q, Zheng W (2022) Artemisinin attenuated ischemic stroke induced cell apoptosis through activation of ERK1/2/CREB/BCL-2 signaling pathway in vitro and in vivo. Int J Biol Sci 18: 4578-4594. doi: 10.7150/ijbs.69892 
  16. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440-3450  https://doi.org/10.1016/S0021-9258(19)83641-4
  17. Kuo JF, Andersson RG, Wise BC, Mackerlova L, Salomonsson I, Brackett NL, Katoh N, Shoji M, Wrenn RW (1980) Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Proc Nat Acad Sci 77: 7039-7043. doi: 10.1073/pnas.77.12.7039 
  18. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341: 197-205. doi: 10.1038/341197a0 
  19. Nishikawa M, Tanaka T, Hidaka H (1980) Ca2+-calmodulin-dependent phosphorylation and platelet secretion. Nature 287: 863-865. doi: 10.1038/287863a0 
  20. Wentworth JK, Pula G, Poole AW (2006) Vasodilator-stimulated phosphoprotein (VASP) is phosphorylated on Ser157 by protein kinase C-dependent and-independent mechanisms in thrombin-stimulated human platelets. Biochem J 393: 555-564. doi: 10.1042/BJ20050796 
  21. Napenas J, Oost FC, DeGroot A, Loven B, Hong CH, Brennan MT, Lockhart PB, van Diermen DE (2013) Review of postoperative bleeding risk in dental patients on antiplatelet therapy. Oral Surg Oral Med Oral Pathol Oral Radiol 115: 491-499. doi: 10.1016/j.oooo.2012.11.001 
  22. Calderwood DA (2004) Integrin activation. J Cell Sci 117: 657-666. doi: 10.5483/bmbrep.2014.47.12.241 
  23. Phillips DR, Nannizzi-Alaimo L, Prasad KS (2001) Beta3 tyrosine phosphorylation in alphaIIbbeta3 (platelet membrane GP IIb-IIIa) outside-in integrin signaling. Thromb Haemost 86: 246-258 https://doi.org/10.1055/s-0037-1616222