DOI QR코드

DOI QR Code

Exploring the role and characterization of Burkholderia cepacia CD2: a promising eco-friendly microbial fertilizer isolated from long-term chemical fertilizer-free soil

  • HyunWoo Son (Department of Applied Biosciences, Kyungpook National University) ;
  • Justina Klingaite (Department of Integrative Biology, Kyungpook National University) ;
  • Sihyun Park (Department of Integrative Biology, Kyungpook National University) ;
  • Jae-Ho Shin (Department of Applied Biosciences, Kyungpook National University)
  • Received : 2023.06.26
  • Accepted : 2023.10.04
  • Published : 2023.12.31

Abstract

In the pursuit of sustainable and environmentally-friendly agricultural practices, we conducted an extensive study on the rhizosphere bacteria inhabiting soils that have been devoid of chemical fertilizers for an extended period exceeding 40 years. Through this investigation, we isolated a total of 80 species of plant growth-promoting rhizosphere bacteria and assessed their potential to enhance plant growth. Among these isolates, Burkholderia cepacia CD2 displayed remarkable plant growth-promoting activity, making it an optimal candidate for further analysis. Burkholderia cepacia CD2 exhibited a range of beneficial characteristics conducive to plant growth, including phosphate solubilization, siderophore production, denitrification, nitrate utilization, and urease activity. These attributes are well-known to positively influence the growth and development of plants. To validate the taxonomic classification of the strain, 16S rRNA gene sequencing confirmed its placement within the Burkholderia genus, providing further insights into its phylogenetic relationship. To delve deeper into the potential mechanisms underlying its plant growth-promoting properties, we sought to confirm the presence of specific genes associated with plant growth promotion in CD2. To achieve this, whole genome sequencing (WGS) was performed by Plasmidsaurus Inc. (USA) utilizing Oxford Nanopore technology (Abingdon, UK). The WGS analysis of the genome of CD2 revealed the existence of a subsystem function, which is thought to be a pivotal factor contributing to improved plant growth. Based on these findings, it can be concluded that Burkholderia cepacia CD2 has the potential to serve as a microbial fertilizer, offering a sustainable alternative to chemical fertilizers.

지속 가능하고 친환경적인 농업 관행을 추구하기 위해 우리는 40년이 넘는 장기간 동안 화학 비료를 사용하지 않은 토양에 서식하는 근권 박테리아에 대한 광범위한 연구를 수행하였다. 이번 조사를 통해 식물생장촉진 근권박테리아 총 80종을 분리하고 이들의 식물생장 증진 가능성을 평가했다. 이러한 분리균중에서 Burkholderia cepacia CD2는 가장 우수한 식물 성장촉진 활성과 생장능을 나타내어 추가 분석을 위한 최적의 후보균주로 선정되었다. Burkholderia cepacia CD2는 인 가용화 능력, 사이드로포어 생산, 탈질화 능력, 아질산 이온 활용능력 및 요소분해효소 활성을 포함하여 식물 성장에 도움이 되는 다양한 유익한 특성을 나타내었다. 이러한 특성은 식물의 성장과 발달에 긍정적인 영향을 미치는 것으로 잘 알려져 있다. 균주의 분류학적 분류를 검증하기 위해 16S rRNA 유전자 서열분석을 통해 Burkholderia 속 내 위치를 확인하여 계통발생 관계에 대한 추가 통찰력을 제공하였다. 식물 생장 촉진 특성의 기본 메커니즘을 더 깊이 조사하기 위해 우리는 CD2에서 식물 생장촉진과 관련된 특정 유전자의 존재를 확인하려고 하였다. 이를 달성하기 위해 옥스포드 나노포어를 활용하여 전장 유전체 시퀀싱을 수행하였다. CD2 게놈에 대한 전장유전체 분석을 통해 식물 생장 개선에 중추적 요인으로 생각되는 하위 시스템 기능을 확인하였다. 이러한 발견을 바탕으로 Burkholderia cepacia CD2는 미생물 비료로 작용하여 화학 비료에 대한 지속 가능한 대안을 제공할 수 있는 잠재력을 가지고 있다는 결론을 내릴수 있다.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ015697)" Rural Development Administration, Republic of Korea.

References

  1. Marschner H (1995) Function of mineral nutrients: micronutrients. In: Mineral Nutrition of Higher Plants, 2nd Edition, Academic Press, London, 313-404. doi: 10.1016/b978-0-08-057187-4.50015-1
  2. Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324: 1519-1520. doi: 1 0.1126/science.1170261 https://doi.org/10.1126/science.1170261
  3. FAO (2020) Food and Agriculture Organization of the United Nations. World Food and Agriculture-Statistical Yearbook 2020, USA. doi: 10.4060/cb1329en
  4. Gupta G, Dhar S, Dass A, Sharma VK, Shukla L, Singh R, Verma G (2020) Assessment of bio-inoculants-mediated nutrient management in terms of productivity, profitability and nutrient harvest index of pigeon pea-wheat cropping system in India. J Plant Nutr 43: 2911-2928. doi: 10.1080/01904167.2020.1806302
  5. Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36: 184-189. doi: 10.1016/j.apsoil.2007.02.005
  6. Sharpley AN, Weld JL, Beegle DB, Kleinman PJ, Gburek WJ, Moore PA, Mullins G (2003) Development of phosphorus indices for nutrient management planning strategies in the United States. J Soil Water Conserv 58: 137-152
  7. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9: 42. doi: 10.3390/toxics9030042
  8. Aggani SL (2013) Development of bio-fertilizers and its future perspective. Sch Acad J Pharm 2: 327-332
  9. Schimel JP (2018) Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst 49: 409-432 doi: 10.1146/annurev-ecolsys-110617-062614
  10. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586 https://doi.org/10.1023/A:1026037216893
  11. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 963401. doi: 10.6064/2012/963401
  12. Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47: 289-297. doi: 10.1007/s12088-007-0054-2
  13. Hartmann A, Schmid M, Tuinen DV, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321: 235-257. doi: 10.1007/s11104- 008-9814-y
  14. Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Marinari SARA (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48: 743-762. doi: 10.1007/s00374-012-0723-0
  15. Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biol Biochem 75: 54-63. doi: 10.1016/j.soilbio.2014.03.023
  16. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170: 265-270. doi: 10.1111/j.1574-6968.1999.tb13383.x
  17. Liu Z, Li YC, Zhang S, Fu Y, Fan X, Patel JS, Zhang M (2015) Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Appl Soil Ecol 96: 217-224. doi: 10.1016/j.apsoil.2015.08.003
  18. Louden BC, Haarmann D, Lynne AM (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 12: 51-53. doi: 10.1128/jmbe.v12i1.249
  19. Watanabe K, Koga N (2009) Use of a microchip electrophoresis system for estimation of bacterial phylogeny and analysis of NO3- reducing bacterial flora in field soils. Biosci Biotechnol Biochem 73: 479-488. doi: 10.1271/bbb.70712
  20. An CH, Lim JH, Kim YH, Jung BK, Kim JW, Kim SD (2012) Effects on the soil microbial diversity and growth of red pepper by treated microbial agent in the red pepper field. Microbiol Biotechnol Lett 40: 30-38. doi: 10.4014/kjmb.1110.10007
  21. You M, Fang S, MacDonald J, Xu J, Yuan ZC (2020) Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiological Research 233: 126395. doi: 10.1016/j.micres.2019.126395
  22. Tagele SB, Kim SW, Lee HG, Kim HS, Lee YS (2018) Effectiveness of multi-trait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling. Microbiological research 214: 8-18. doi: 10.1016/j.micres.2018.05.004
  23. Jung BK, Hong SJ, Park GS, Kim MC, Shin JH (2018) Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Appl Biol Chem 61: 173-180. doi: 10.1007/s13765-018-0345-9
  24. Lemanceau P, Expert D, Gaymard F, Bakker PAHM, Briat JF (2009) Role of iron in plant-microbe interactions. Adv Bot Res 51: 491-549. doi: 10.1016/s0065-2296(09)51012-9
  25. Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130: 213-232. doi: 10.1007/bf00011873
  26. Bernhard A (2010) The nitrogen cycle: processes, players, and human impact. Nature Education Knowledge 3: 25
  27. Aczel MR (2019) What is the nitrogen cycle and why is it key to life? Front Young Minds 41. doi: 10.3389/frym.2019.00041
  28. Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198: 656-669. doi: 10.1111/nph.12235
  29. Jetten MS (2008) The microbial nitrogen cycle. Environmental microbiology 10: 2903-2909. doi: 10.1007/978-3-662-66547-3_7
  30. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution 4: 406-425. doi: 10.1093/oxfordjournals.molbev.a040454
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882. doi: 10.1093/nar/25.24.4876
  32. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245. doi: 10.1093/bioinformatics/17.12.1244