DOI QR코드

DOI QR Code

The immune enhancement effect of Cheonggukjang Water Extract (CWE) via activation of NF-κB pathways in murine macrophage RAW 264.7 cells

RAW 264.7 대식세포에서 청국장 열수 추출물(Cheonggukjang Water Extract, CWE)의 면역 증강 효과

  • Sehyeon Jang (School of Food Science and Biotechnology, Kyungpook National University) ;
  • San Kim (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Se Jeong Kim (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Sung Ran Yoon (Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services) ;
  • Bo Ram So (COSMAX NBT, INC.) ;
  • Jung A Ryu (Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services) ;
  • Jeong Min Park (Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services) ;
  • Sung Keun Jung (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2023.06.10
  • Accepted : 2023.06.30
  • Published : 2023.12.31

Abstract

Due to the COVID-19 pandemic, the immuneenhancing health functional food market that protects our bodies from pathogens such as viruses continues to grow. In this study, we aimed to prove the Cheonggukjang, a high-nutrient food with high protein, fat, and dietary fiber content, as an immuneenhancing nutraceutical. Cheonggukjang water extract (CWE) increased the production of nitric oxide, reactive oxygen species, and cytokines such interleukin (IL)-6, IL-1β, and tumor necrosis factor-α without affecting viability in RAW 264.7 cells. Furthermore, CWE significantly upregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. CWE enhanced the phosphorylation of I kappa B kinase α/β and I kappa B (IκB)α, as well as the degradation of IκBα. CWE also induced increased phosphorylation of nuclear factor-kappa B p65 and facilitated the redistribution of p65 from the cytoplasm to the nucleus in RAW 264.7 cells. These findings suggest that CWE has potential as a health functional food material that can enhance the innate immune response.

코로나19 바이러스의 대유행으로 바이러스와 같은 외부 병원균으로부터 우리의 몸을 보호하는 면역 기능 개선 건강기능식품의 시장은 점차 증가하고 있다. 우리는 본 연구에서 높은 조단백, 조지방, 식이섬유 함량을 나타내는 고영양식품인 청국장이 면역 강화 기능을 나타냄을 밝혀내고자 하였다. 청국장 열수 추출물은 RAW 264.7 세포에서 세포독성을 나타내지 않으며, 대식세포의 nitric oxide, reactive oxygen species 및 interleukin (IL)-6, IL-1β, tumor necrosis factor-α 사이토카인의 생산량을 증가시켰다. 또한, 청국장 열수 추출물은 RAW 264.7 세포에서 inducible nitric oxide synthase 및 cyclooxygenase-2의 발현을 유의적으로 증가시켰다. 청국장 열수 추출물은 RAW 264.7 세포에서 I kappa B kinase α/β와 I kappa B (IκB)α의 인산화 및 IκBα의 degradation을 증가시켰으며, Nuclear factor-kappa B p65의 인산화를 증가시켜 p65의 세포질에서 핵으로의 이동을 촉진하였다. 이러한 연구 결과는 청국장 추출물이 선천성 면역 반응을 강화하는데 유망한 건강기능식품 소재로 활용될 수 있음을 시사한다.

Keywords

Acknowledgement

본 연구는 2022년 경상북도기술원 1팀 1교수 책임제 공동연구 '경북 식재료 활용K-면역 농식품 기술개발' (과제번호: LP0048882022) 연구비 지원과 한국연구재단의 중견연구 (NRF-2022R1A2C1010923) 지원을 받아 수행되었습니다.

References

  1. Gun-Dong K, So-Young L, Hee Soon S (2022) COVID-19 pandemic and the immune regulatory function of foods. Food Science and Industry 55: 244-263 https://doi.org/10.23093/FSI.2022.55.3.244
  2. Kolter J, Henneke P, Gross O, Kierdorf K, Prinz M, Graf L, Schwemmle M (2022) Paradoxical immunodeficiencies-When failures of innate immunity cause immunopathology. Eur J Immunol 52: 1419-1430. doi: 10.1002/eji.202149531
  3. Marshall JS, Warrington R, Watson W, Kim HL (2018) An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 14: 49. doi: 10.1186/s13223-018-0278-1
  4. Atri C, Guerfali FZ, Laouini D (2018) Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci 19: 1801. doi: 10.3390/ijms19061801
  5. Herb M, Schramm M (2021) Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel) 10: 313. doi: 10.3390/antiox100 20313
  6. Satoh T, Akira S (2016) Toll-Like Receptor Signaling and Its Inducible Proteins. Microbiol Spectr 4. doi: 10.1128/microbiolspec.MCHD-0040-2016
  7. Jia J, Liu Y, Zhang X, Liu X, Qi J (2013) Regulation of iNOS expression by NF-κB in human lens epithelial cells treated with high levels of glucose. Invest Ophthalmol Vis Sci 54: 5070-5077. doi: 10.1167/iovs.13-11796
  8. Uehara EU, Shida Bde S, de Brito CA (2015) Role of nitric oxide in immune responses against viruses: beyond microbicidal activity. Inflamm Res 64: 845-852. doi: 10.1007/s00011-015-0857-2
  9. Sun SC (2011) Non-canonical NF-κB signaling pathway. Cell Res 21: 71-85. doi: 10.1038/cr.2010.177
  10. Lee B-Y, Kim D-M, Kim K-H (1991) Physico-chemical properties of viscous substance extracted from chungkook-jang. Korean J Food Sci Technol 23: 599-604
  11. Hyo-Jin L, Sang AC, Jin-Gi S, Jeong-Sang K, Yong-Jin J, Kwong-Duck M, Joong-Ho K (2007) Quality and Functional Components of Commercial Chungkukjang Powders. Journal of the Korean Society of Food Science and Nutrition 36: 65-71 https://doi.org/10.3746/jkfn.2007.36.1.065
  12. Kim J, Yoon B, Yang J, Hwang S, Choi I (2021) Physicochemical Characteristics and Antioxidant Properties of Protein shake Fortified with Cheonggukjang Prepared by Rhynchosia nulubilis. Korean Journal of Human Ecology 30: 851-860. doi: 10.5934/kjhe.2021.30.5.851
  13. Kim ha r, Seon-Young K, Eun-Mi N, Jong Hyun C, Mi Hee P (2022) Effect of Cheonggukjang Pills Product Containing Blueberry and Aronia in Mouse Inflammatory Bowel Disease. Korean J Food Nutr 35: 513-520
  14. Ki-Hyo J, Min-Ah K, Ha Gyoon N, SangGuan Y, Ji-Eun K, Mi-Ja K (2022) Inhibitory Effects of Cheonggukjang Mucoid on 3T3-L1 Adipocyte Differentiation. J Korean Soc Food Sci Nutr 51: 1129-1135 https://doi.org/10.3746/jkfn.2022.51.11.1129
  15. Lee SJ, Rim HK, Jung JY, An HJ, Shin JS, Cho CW, Rhee YK, Hong HD, Lee KT (2013) Immunostimulatory activity of polysaccharides from Cheonggukjang. Food Chem Toxicol 59: 476-484. doi: 10.1016/j.fct.2013.06.045
  16. Kim MJ, Kim JG, Sydara KM, Lee SW, Jung SK (2020) Croton hirtus L'Her Extract Prevents Inflammation in RAW 264.7 Macrophages Via Inhibition of NF-κB Signaling Pathway. J Microbiol Biotechnol 30: 490-496. doi: 10.4014/jmb.1908.08045
  17. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2: 907-916. doi: 10.1038/ni1001-907
  18. Monmai C, Go SH, Shin IS, You S, Lee H, Kang S, Park WJ (2018) Immune Enhancement Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways on RAW 264.7 Cells. J Microbiol Biotechnol 28: 349-356. doi: 10.4014/jmb.1709.09005
  19. Lee JH, Ahn DU, Paik HD (2018) In Vitro Immune-Enhancing Activity of Ovotransferrin from Egg White via MAPK Signaling Pathways in RAW 264.7 Macrophages. Korean J Food Sci Anim Resour 38: 1226-1236. doi: 10.5851/kosfa.2018.e56
  20. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15: 323-350. doi: 10.1146/annurev.immunol.15.1.323
  21. Arias-Salvatierra D, Silbergeld EK, Acosta-Saavedra LC, CalderonAranda ES (2011) Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide. Cell Signal 23: 425-435. doi: 10.1016/j.cellsig.2010.10.017
  22. Zhao Y, Yang Y, Liu M, Qin X, Yu X, Zhao H, Li X, Li W (2022) COX-2 is required to mediate crosstalk of ROS-dependent activation of MAPK/NF-κB signaling with pro-inflammatory response and defense-related NO enhancement during challenge of macrophage-like cell line with Giardia duodenalis. PLoS Negl Trop Dis 16: e0010402. doi: 10.1371/journal.pntd.0010402
  23. Tavassolifar MJ, Vodjgani M, Salehi Z, Izad M (2020) The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis 2020: 5793817. doi: 10.1155/2020/5793817
  24. Wu F, Zhou C, Zhou D, Ou S, Liu Z, Huang H (2018) Immune-enhancing activities of chondroitin sulfate in murine macrophage RAW 264.7 cells. Carbohydr Polym 198: 611-619. doi: 10.1016/j.carbpol.2018.06.071
  25. Schooltink H, Rose-John S (2002) Cytokines as therapeutic drugs. J Interferon Cytokine Res 22: 505-516. doi:10.1089/10799900252981981
  26. Belardelli F, Ferrantini M (2002) Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol 23: 201-208. doi: 10.1016/s1471-4906(02)02195-6
  27. Pradere JP, Hernandez C, Koppe C, Friedman RA, Luedde T, Schwabe RF (2016) Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci Signal 9: ra85. doi: 10.1126/scisignal.aab2820
  28. Zhang S, Li W, Smith CJ, Musa H (2015) Cereal-derived arabinoxylans as biological response modifiers: extraction, molecular features, and immune-stimulating properties. Crit Rev Food Sci Nutr 55: 1035-1052. doi: 10.1080/10408398.2012.705188
  29. Shim J-Y, Jung I-s, Kim CW, Yun YS, Song J-Y (2004) Comparison between Immunostimulatory Activity and Molecular Structure of Different Polysaccharides. Immune Network 4: 94-99 https://doi.org/10.4110/in.2004.4.2.94