DOI QR코드

DOI QR Code

Novel sinIR promoter for Bacillus subtilis DB104 recombinant protein expression system

  • Ji-Su Jun (Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University) ;
  • Min-Joo Kim (Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University) ;
  • KwangWon Hong (Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University)
  • 투고 : 2023.02.27
  • 심사 : 2023.03.20
  • 발행 : 2023.12.31

초록

Transcriptome analysis revealed that the sinR gene encoding a transition-state regulator of Bacillus pumilus, genetically close to B. subtilis, was expressed at high levels during growth. The sinR gene is the second gene of the sinIR operon consisting of three promoters and two structural genes in B. subtilis. This study used the sinIR promoter of B. subtilis DB104 to construct a recombinant protein expression system. First, the expression ability depending on the number of sinIR promoter was investigated using enhanced green fluorescent protein (eGFP). The expression level of eGFP was slightly higher when using two promoters (Psin2) than using original promoters. The Psin2 promoter was further engineered by modifying the repressor binding site and -35 and -10 regions. Shine-Dalgarno (SD) sequence of the sinI gene was modified to the consensus sequence. Finally, combining the engineered Psin2 promoter with the modified SD sequence increased the expression level of eGFP by about 13.4-fold over the original promoter. Our results suggest that the optimized sinIR promoter could be used as a novel tool for recombinant protein expression in B. subtilis.

키워드

과제정보

This research was supported by the Basic Science Research Programme through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1I1A2046284).

참고문헌

  1. Zhang K, Su L, Wu J (2020) Recent Advances in Recombinant Protein Production by Bacillus subtilis. Annu Rev Food Sci Technol 11: 295-318. doi:10.1146/annurev-food-032519-051750
  2. Zhou C, Ye B, Cheng S, Zhao L, Liu Y, Jiang J, Yan X (2019) Promoter engineering enables overproduction of foreign proteins from a single copy expression cassette in Bacillus subtilis. Microb Cell Fact 18: 111. doi:10.1186/s12934-019-1159-0
  3. Harwood CR, Cranenburgh R (2008) Bacillus protein secretion: an unfolding story. Trends in microbiology 16: 73-79. doi:10.1016/j.tim.2007.12.001
  4. Phan TT, Nguyen HD, Schumann W (2012) Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. J Biotechnol 157: 167-172. doi:10.1016/j.jbiotec.2011.10.006
  5. Tran DTM, Phan TTP, Huynh TK, Dang NTK, Huynh PTK, Nguyen TM, Truong TTT, Tran TL, Schumann W, Nguyen HD (2017) Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis. Microb Cell Fact 16: 130. doi:10.1186/s12934-017-0747-0
  6. Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J (2016) Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym 140: 424-432. doi:10.1016/j.carbpol.2015.12.065
  7. Huang H, Ridgway D, Gu T, Moo-Young M (2004) Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess and Biosystems Engineering 27: 63-69. doi:10.1007/s00449-004-0391-z
  8. Bongers RS, Veening J-W, Van Wieringen M, Kuipers OP, Kleerebezem M (2005) Development and characterization of a subtilin-regulated expression system in Bacillus subtilis: strict control of gene expression by addition of subtilin. Applied and Environmental Microbiology 71: 8818-8824. doi:10.1128/AEM.71.12.8818-8824.2005
  9. Phan TTP, Nguyen HD, Schumann W (2006) Novel plasmid-based expression vectors for intra-and extracellular production of recombinant proteins in Bacillus subtilis. Protein expression and purification 46: 189-195. doi:10.1016/j.pep.2005.07.005
  10. Kawamura F, Doi RH (1984) Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J Bacteriol 160: 442-444. doi:10.1128/jb.160.1.442-444.1984
  11. Vojcic L, Despotovic D, Martinez R, Maurer K-H, Schwaneberg U (2012) An efficient transformation method for Bacillus subtilis DB104. Appl Microbiol Biotechnol 94: 487-493. doi:10.1007/s00253-012-3987-2
  12. Guan C, Cui W, Cheng J, Zhou L, Liu Z, Zhou Z (2016) Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis. Microbial Cell Factories 15: 1-12. doi:10.1186/s12934-016-0464-0
  13. Sun X, Zhang X, Huang H, Wang Y, Tu T, Bai Y, Wang Y, Zhang J, Luo H, Yao B (2020) Engineering the cbh1 promoter of Trichoderma reesei for enhanced protein production by replacing the binding sites of a transcription repressor ACE1 to those of the activators. J Agric Food Chem 68: 1337-1346. doi:10.1021/acs.jafc.9b05452.s001
  14. Zhang W, Zhao Z, Yang Y, Liu X, Bai Z (2017) Construction of an expression vector that uses the aph promoter for protein expression in Corynebacterium glutamicum. Plasmid 94: 1-6. doi:10.1016/j.plasmid.2017.09.001
  15. Duzenli OF, Okay S (2020) Promoter engineering for the recombinant protein production in prokaryotic systems. AIMS Bioengineering 7: 62-81. doi:10.3934/bioeng.2020007
  16. Liu X, Yang H, Ye Y, Pan L (2017) Identification of strong promoters based on the transcriptome of Bacillus licheniformis. Biotechnol Lett 39: 873-881. doi:10.1007/s10529-017-2304-7
  17. Liao Y, Huang L, Wang B, Zhou F, Pan L (2015) The global transcriptional landscape of Bacillus amyloliquefaciens XH7 and high-throughput screening of strong promoters based on RNA-seq data. Gene 571: 252-262. doi:10.1016/j.gene.2015.06.066
  18. Geissler A, Poulsen LD, Doncheva NT, Anthon C, Seemann SE, Gonzalez-Tortuero E, Breuner A, Jensen LJ, Hjort C, Vinther J (2022) The impact of PrsA over-expression on the Bacillus subtilis transcriptome during fed-batch fermentation of alpha-amylase production. Frontiers in microbiology 13: 909493. doi:10.3389/fmicb.2022.909493
  19. Yang C-K, Tai PC, Lu C-D (2014) Time-related transcriptome analysis of B. subtilis 168 during growth with glucose. Current microbiology 68: 12-20. doi:10.1007/s00284-013-0432-4
  20. Van Duy N, Mader U, Tran NP, Cavin JF, Tam LT, Albrecht D, Hecker M, Antelmann H (2007) The proteome and transcriptome analysis of Bacillus subtilis in response to salicylic acid. Proteomics 7: 698-710. doi:10.1002/pmic.200600706
  21. Hyyrylainen H-L, Sarvas M, Kontinen VP (2005) Transcriptome analysis of the secretion stress response of Bacillus subtilis. Appl Microbiol Biotechnol 67: 389-396. doi:10.1007/s00253-005-1898-1
  22. Ye B-C, Zhang Y, Yu H, Yu W-B, Liu B-H, Yin B-C, Yin C-Y, Li Y-Y, Chu J, Zhang S-L (2009) Time-resolved transcriptome analysis of Bacillus subtilis responding to valine, glutamate, and glutamine. PLoS One 4: e7073. doi:10.1371/journal.pone.0007073
  23. Blom E-J, Ridder AN, Lulko AT, Roerdink JB, Kuipers OP (2011) Time-resolved transcriptomics and bioinformatic analyses reveal intrinsic stress responses during batch culture of Bacillus subtilis. PLoS One 6: e27160. doi:10.1371/journal.pone.0027160
  24. Swarge B, Abhyankar W, Jonker M, Hoefsloot H, Kramer G, Setlow P, Brul S, de Koning LJ (2020) Integrative analysis of proteome and transcriptome dynamics during Bacillus subtilis spore revival. Msphere 5: e00463-00420. doi:oi.org/10.1101/682872
  25. Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst F-A, Siebourg J, Mader U, Lalk M, Hecker M, Becher D (2010) Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat Commun 1: 1-9. doi:10.1038/ncomms1137
  26. Liu X, Wang H, Wang B, Pan L (2018) High-level extracellular protein expression in Bacillus subtilis by optimizing strong promoters based on the transcriptome of Bacillus subtilis and Bacillus megaterium. Protein Expr Purif 151: 72-77. doi:10.1016/j.pep.2018.06.006
  27. Han LL, Shao HH, Liu YC, Liu G, Xie CY, Cheng XJ, Wang HY, Tan XM, Feng H (2017) Transcriptome profiling analysis reveals metabolic changes across various growth phases in Bacillus pumilus BA06. BMC Microbiol 17: 156. doi:10.1186/s12866-017-1066-7
  28. Voigt CA, Wolf DM, Arkin AP (2005) The Bacillus subtilis sin operon: an evolvable network motif. Genetics 169: 1187-1202. doi:10.1534/genetics.104.031955
  29. Bai U, Mandic-Mulec I, Smith I (1993) SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes & development 7: 139-148. doi:10.1101/gad.7.1.139
  30. Gaur N, Oppenheim J, Smith I (1991) The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein. J Bacteriol 173: 678-686. doi:10.1128/jb.173.2.678-686.1991
  31. Louie P, Lee A, Stansmore K, Grant R, Ginther C, Leighton T (1992) Roles of rpoD, spoIIF, spoIIJ, spoIIN, and sin in regulation of Bacillus subtilis stage II sporulation-specific transcription. J Bacteriol 174: 3570-3576. doi:10.1128/jb.174.11.3570-3576.1992
  32. Strauch MA, Hoch JA (1993) Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol 7: 337-342. doi:10.1111/j.1365-2958.1993.tb01125.x
  33. Shafikhani SH, Mandic-Mulec I, Strauch MA, Smith I, Leighton T (2002) Postexponential regulation of sin operon expression in Bacillus subtilis. J Bacteriol 184: 564-571. doi:10.1128/jb.184.2.564-571.2002
  34. Gaur NK, Cabane K, Smith I (1988) Structure and expression of the Bacillus subtilis sin operon. J Bacteriol 170: 1046-1053. doi:10.1128/jb.170.3.1046-1053.1988
  35. Chang AY, Chau VW, Landas JA, Pang Y (2017) Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI methods 1: 22-25
  36. Kang SJ, Park EA, Lee DH, Hong KW (2019) Comparison of the stability of eGFP displayed on the Bacillus subtilis spore surface using CotB and C-terminally truncated CotB proteins as an anchoring motif under extreme conditions. Appl Biol Chem 62: 1-8. doi:10.1186/s13765-019-0448-y
  37. Haldenwang WG (1995) The sigma factors of Bacillus subtilis. Microbiol Rev 59: 1-30. doi:10.1128/mr.59.1.1-30.1995
  38. Ramarajan M, Fabris M, Abbriano RM, Pernice M, Ralph PJ (2019) Novel endogenous promoters for genetic engineering of the marine microalga Nannochloropsis gaditana CCMP526. Algal Research 44: 101708. doi:10.1016/j.algal.2019.101708
  39. Song Y, Nikoloff JM, Fu G, Chen J, Li Q, Xie N, Zheng P, Sun J, Zhang D (2016) Promoter screening from Bacillus subtilis in various conditions hunting for synthetic biology and industrial applications. PLoS One 11: e0158447. doi:10.1371/journal.pone.0158447
  40. De Mey M, Maertens J, Lequeux GJ, Soetaert WK, Vandamme EJ (2007) Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC biotechnology 7: 1-14. doi:10.1186/1472-6750-7-34
  41. Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19: 98-106. doi:10.1016/j.ymben.2013.07.006
  42. Zhao M, Zhou S, Wu L, Deng Y (2020) Model-driven promoter strength prediction based on a fine-tuned synthetic promoter library in Escherichia coli. bioRxiv: 170365. doi:10.1101/2020.06.25.170365
  43. Miao C-C, Han L-L, Lu Y-B, Feng H (2020) Construction of a high-expression system in Bacillus through transcriptomic profiling and promoter engineering. Microorganisms 8: 1030. doi:10.3390/microorganisms8071030
  44. Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55: 739-749. doi:10.1111/j.1365-2958.2004.04440.x
  45. Newman JA, Rodrigues C, Lewis RJ (2013) Molecular basis of the activity of SinR Protein, the master regulator of biofilm formation in Bacillus subtilis. J Biol Chem 288: 10766-10778. doi:10.1074/jbc.m113.455592
  46. Kallio P, Fagelson JE, Hoch JA, Strauch M (1991) The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J Biol Chem 266: 13411-13417. doi:10.1016/s0021-9258(18)98855-1
  47. Strauch M, Spiegelman G, Perego M, Johnson W, Burbulys D, Hoch J (1989) The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. The EMBO journal 8: 1615-1621. doi:10.1002/j.1460-2075.1989.tb03546.x
  48. Li J, Zhang Y (2014) Relationship between promoter sequence and its strength in gene expression. The European physical journal E 37: 1-6. doi:10.1140/epje/i2014-14086-1
  49. Park JW, Jung Y, Lee SJ, Jin DJ, Lee Y (2002) Alteration of stringent response of the Escherichia coli rnpB promoter by mutations in the -35 region. Biochem Biophys Res Commun 290: 1183-1187. doi:10.1006/bbrc.2002.6455
  50. McCracken A, Turner MS, Giffard P, Hafner LM, Timms P (2000) Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch Microbiol 173: 383-389. doi:10.1007/s002030000159
  51. Jan J, Valle F, Bolivar F, Merino E (2001) Construction of protein overproducer strains in Bacillus subtilis by an integrative approach. Appl Microbiol Biotechnol 55: 69-75. doi:10.1007/s002530000448
  52. Wu S-M, Feng C, Zhong J, Huan L-D (2011) Enhanced production of recombinant nattokinase in Bacillus subtilis by promoter optimization. World J Microbiol Biotechnol 27: 99-106. doi:10.1007/s11274-010-0432-5
  53. Lee S-J, Pan J-G, Park S-H, Choi S-K (2010) Development of a stationary phase-specific autoinducible expression system in Bacillus subtilis. J Biotechnol 149: 16-20. doi:10.1016/j.jbiotec.2010.06.021
  54. Phan TTP, Nguyen HD, Schumann W (2012) Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. J Biotechnol 157: 167-172. doi:10.1016/j.jbiotec.2011.10.006
  55. Hershey JW, Sonenberg N, Mathews MB (2012) Principles of translational control: an overview. Cold Spring Harbor perspectives in biology 4: a011528. doi:10.1101/cshperspect.a011528
  56. Park YS, Seo SW, Hwang S, Chu HS, Ahn J-H, Kim T-W, Kim D-M, Jung GY (2007) Design of 5'-untranslated region variants for tunable expression in Escherichia coli. Biochem Biophys Res Commun 356: 136-141. doi:10.1016/j.bbrc.2007.02.127
  57. Volkenborn K, Kuschmierz L, Benz N, Lenz P, Knapp A, Jaeger K-E (2020) The length of ribosomal binding site spacer sequence controls the production yield for intracellular and secreted proteins by Bacillus subtilis. Microbial cell factories 19: 1-12. doi:10.1186/s12934-020-01404-2
  58. Vellanoweth RL, Rabinowitz JC (1992) The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6: 1105-1114. doi:10.1111/j.1365-2958.1992.tb01548.x
  59. Komarova AV, Tchufistova LS, Dreyfus M, Boni IV (2005) AU-rich sequences within 5' untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J Bacteriol 187: 1344-1349. doi:10.1128/jb.187.4.1344-1349.2005
  60. Lee J (2014) Development and characterization of expression vectors for Corynebacterium glutamicum. J Microbiol Biotechnol 24: 70-79. doi:10.4014/jmb.1310.10032
  61. Cheng J, Guan C, Cui W, Zhou L, Liu Z, Li W, Zhou Z (2016) Enhancement of a high efficient autoinducible expression system in Bacillus subtilis by promoter engineering. Protein Expression and Purification 127: 81-87. doi:10.1016/j.pep.2016.07.008
  62. Zhou C, Ye B, Cheng S, Zhao L, Liu Y, Jiang J, Yan X (2019) Promoter engineering enables overproduction of foreign proteins from a single copy expression cassette in Bacillus subtilis. Microbial cell factories 18: 1-11. doi: 10.1186/s12934-019-1159-0