DOI QR코드

DOI QR Code

Effect of structural variation of medium chain fatty acids on antibacterial activities against pathogenic bacteria

중쇄지방산의 구조적 차이에 따른 병원성 세균에 대한 항균활성 변화

  • Ju-Hyeon Choi (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Su-Hyeon Son (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Hak-Ryul Kim (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2023.01.03
  • Accepted : 2023.02.07
  • Published : 2023.12.31

Abstract

Broad range of fatty acids were reported to show antimicrobial activities against broad range of microorganisms. However, possible changes of the antibacterial activity of a fatty acid based on structural variations are largely unknown. This study was focused on determination and comparison of the antimicrobial activities of the medium chain fatty acids, based on the position of carboxyl groups on either terminal end, against the representative food-pathogenic bacteria. Over all, mono-carboxyl medium chain fatty acids (MC-MCFA) presented stronger antimicrobial activities against the food-pathogenic bacteria tested including methicillin-resistant Staphylococcus aureus (MRSA) than di-carboxyl medium chain fatty acid (DC-MCFA). In addition, some of MC-MCFA and DC-MCFA showed high possibility to be used as a synergistic adjuvant for both the commercial β-lactam family antibiotics and aminoglycoside family antibiotics against MRSA.

일반적으로 여러 다양한 지방산들은 넓은 범위의 미생물들에 대해 항균활성을 나타내는 것으로 알려져 있다. 그러나 지방산의 구조에는 다양한 구조적 차이가 있음에도 불구하고 지방산의 구조적 차이에 따른 항균활성의 변화에 대해서는 많이 알려져 있지 않다. 본 연구는 중쇄지방산들을 대상으로 카복실기의 숫자와 위치에 따른 항균활성의 차이를 잘 알려져 있는 식중독균들을 대상으로 조사하였다. 전반적으로 단일카복실기를 갖는 중쇄 지방산이 이중카복실기를 갖는 중쇄지방산에 비해 더 강한 항균활성을 나타내었지만 두 종류의 중쇄지방산 모두 일반 항생제들과 함께 사용될 경우 매우 높은 시너지 효과를 나타낸다는 사실이 추가적으로 확인되었다.

Keywords

Acknowledgement

본 연구는 환경부의 생물소재 전문인력 양성사업과 차세대 시퀀싱 핵심연구지원센터의 지원을 받아 수행되었습니다.

References

  1. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8): 520-532. doi: 10.1056/NEJM199808203390806
  2. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 9: 629-641. doi:10.1038/nrmicro2200
  3. Thormar H, Hilmarsson H (2007) The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem Phys Lipids 150(1): 1-11. doi: 10.1016/j.chemphyslip.2007.06.220
  4. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85(6): 1629-1642. doi: 10.1007/s00253-009-2355-3
  5. Kumar P, Lee JH, Beyenal H, Lee J (2020) Fatty Acids as Antibiofilm and Antivirulence Agents. Trends Microbiol 28(9): 753-768. doi:10.1016/j.tim.2020.03.014
  6. Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother (Bethesda) 2(1): 23-28. doi: 10.1128/AAC.2.1.23
  7. Bergsson G, Arnfinnsson J, Steingrimsson O, Thormar H (2001) Killing of Gram-positive cocci by fatty acids and monoglycerides. Antimicrob Agents Chemother (Bethesda) 109(10): 670-678. doi: 10.1034/j.1600-0463.2001.d01-131.x
  8. Sun CQ, O'Connor CJ, Roberton AM (2003) Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol Med Microbiol 36(1-2): 9-17. doi: 10.1016/S0928-8244(03)00008-7
  9. Wille JJ, Kydonieus A (2003) Palmitoleic acid isomer (C16:1Δ6) in human skin sebum is effective against Gram-positive bacteria. Skin Pharmacol Appl Skin Physiol 16(3): 176-187. doi: 10.1159/000069757
  10. Kodicek E (1945) The effect of unsaturated fatty acids on Lactobacillus helveticus and other Gram-positive microorganisms. Biochem J 39(1):78-85. doi: 10.1042/bj0390078
  11. Galbraith H, Miller TB, Paton AM, Thompson JK (1971) Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J Appl Bacteriol 34(4): 803-813. doi: 10.1111/j.1365-2672.1971.tb01019.x
  12. Yoon BK, Jackman JA, Valle-Gonzalez ER, Cho NJ (2018) Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci 19(4): 1114. doi:10.3390/ijms19041114
  13. Skrivanova E, Marounek M, Dlouha G, Kanka J (2005) Susceptibility of Clostridium perfringens to C2-C18 fatty acids. Lett Appl Microbiol 41(1): 77-81. doi: 10.1111/j.1472-765X.2005.01709.x
  14. Cochrane RA, Huss AR, Aldrich GC, Stark CR, Jones CK (2016) Evaluating chemical mitigation of Salmonella typhimurium ATCC 14028 in animal feed ingredients. J Food Prot 79(4): 672-676. doi: 10.4315/0362-028X.JFP-15-320
  15. Murra PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, Morgan DR (1995) Manual of Clinical Microbiology (6th edn). Trends Microbiol 3(11): 449
  16. Sopirala MM, Mangino JE, Gebreyes WA, Biller B, Bannerman T, Balada-Llasat J, Pancholi P (2010) Synergy testing by E-test, microdilution checker board, and time-kill methods for pan-drugresistant Acinetobacter baumannii. Antimicrob Agents Chemo 54: 4678-4683. doi: 10.1128/AAC.00497-10
  17. Park S, Lee JH, Kim YG, Hu L, Lee J (2022) Fatty acids as aminoglycoside antibiotic adjuvants against Staphylococcus aureus. Front Microbiol 13: 876932. doi: 10.3389/fmicb.2022.876932