Acknowledgement
This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Agricultural Machinery/Equipment Localization Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (no.321055-05), and Agricultural Machinery/Equipment Localization Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (no.122020-3). We thank Assoc. Prof. P.T. Huyen (Department of Medicinal Resources, National Institute of Medicinal Materials, Vietnam) for identifying samples of Kaempferia parviflora Wall. ex Baker.
References
- Wongsinkongman P, Mongkolchaipak N, Chansuvanich N, Techadumrongsin Y, Boonruad T (2003) Quality evaluation of crude drugs and volatile oil of Krachai-dam rhizomes. Bull Dep Med Sci 45: 1-16
- Hawiset T, Muchimapura S, Wattanathorn J, Sripanidkulchai B (2011) Screening neuropharmacological activities of Kaempferia parviflora (Krachai Dam) in healthy adult male rats. Am J Appl Sci 8: 695. doi: 10.3844/ajassp.2011.695.702
- Azuma T, Tanaka Y, Kikuzaki H (2008) Phenolic glycosides from Kaempferia parviflora. Phytochemistry 69: 2743-2748. doi: 10.1016/j.phytochem.2008.09.001
- Yenjai C, Prasanphen K, Daodee S, Wongpanich V, Kittakoop P (2004) Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75: 89-92. doi: 10.1016/j.fitote.2003.08.017
- Patanasethanont D, Nagai J, Yumoto R, Murakami T, Sutthanut K, Sripanidkulchai B, Yenjai C, Takano M (2007) Effects of Kaempferia parviflora extracts and their flavone constituents on P-glycoprotein function. J Pharm Sci 96: 223-233 doi: 10.1002/jps.20769
- Wungsintaweekul J, Sitthithaworn W, Putalun W, Pfeifhoffer HW, Brantner A (2010) Antimicrobial, antioxidant activities and chemical composition of selected Thai spices. Songklanakarin J Sci Technol 32(6): 589-598
- Thao NP, Luyen BT, Lee SH, Jang HD, Kim YH (2016) Anti-osteoporotic and antioxidant activities by rhizomes of Kaempferia parviflora Wall. ex Baker. Nat Prod Sci 22: 13-19. doi: 10.20307/nps.2016.22.1.13
- Jeong D, Kim DH, Chon JW, Kim H, Lee SK, Kim HS, Yim JH, Song KY, Kang IB, Kim YJ, Park JH, Jang HS, Kang SH, Kim SK, Seo KH (2016) Antibacterial effect of crude extracts of Kaempferia parviflora (Krachaidam) against Cronobacter spp. and Enterohemorrhagic Escherichia coli (EHEC) in various dairy foods: A preliminary study. J Milk Sci Biotechnol 34: 63-68. doi: 10.22424/jmsb.2016.34.2.63
- Spencer JP (2009) Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr 4: 243-250. doi: 10.1007/s12263-009-0136-3
- Pitakpawasutthi Y, Palanuvej C, Ruangrungsi N (2018) Quality evaluation of Kaempferia parviflora rhizome with reference to 5,7-dimethoxyflavone. J Adv Pharm Technol Res 9: 26-31. doi: 10.4103/japtr.JAPTR_147_17
- Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B (2014) Transdermal permeation of Kaempferia parviflora methoxyflavones from isopropyl myristate-based vehicles. AAPS Pharm Sci Tech 15: 947-955. doi: 10.1208/s12249-014-0122-y
- Sawasdee P, Sabphon C, Sitthiwongwanit D, Kokpol U (2009) Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora. Phytother Res 23: 1792-1794. doi: 10.1002/ptr.2858
- Jung M, Park M (2007) Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules 12: 2130-2139. doi: 10.3390/12092130
- Tep-Areenan P, Sawasdee P, Randall M (2010) Possible mechanisms of vasorelaxation for 5,7-dimethoxyflavone from Kaempferia parviflora in the rat aorta. Phytother Res 24(10): 1520-1525. doi: 10.1002/ptr.3164
- Adams RP (2017) Identification of essential oil components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publ. Co. Carol Stream, Illinois, USA. doi: 10.1016/j.jasms.2005.07.008
- NIST (2017) NIST17; National Institute of Standards and Technology: Gaithersburg
- Miliauskas G, Venskutonis PR, Van Beek TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85(2): 231-237. doi: 10.1016/j.foodchem.2003.05.007
- Nguyen VT, Vuong QV, Bowyer MC, Van Altena IA, Scarlett CJ (2015) Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus Amarus. Drying Technology 33: 1006-1017. doi: 10.1080/07373937.2015.1013197
- Nguyen DMC, Seo DJ, Lee HB, Kim IS, Kim KY, Park RD, Jung WJ (2013) Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microbial Pathogenesis 56: 8-15. doi: 10.1016/j.micpath.2013.01.001
- Hou H, Zhang X, Zhao T, Zhou L (2020) Effects of Origanum vulgare essential oil and its two main components, carvacrol and thymol, on the plant pathogen Botrytis cinerea. PeerJ 8: e9626 doi:10.7717/peerj.9626
- SAS institute (2004) SAS/STAT User's Guide, version 9.4. Cary, NC, USA
- Begum T, Gogoi R, Sarma N, Sudin Pandey K, Lal M (2022) Direct sunlight and partial shading alter the quality, quantity, biochemical activities of Kaempferia parviflora Wall., ex. Baker rhizome essential oil: A high industrially important species. Industrial Crops & Products 18: 114765. doi: 10.1016/j.indcrop.2022.114765
- Pripdeevech P, Pitija K, Rujjanawate C, Pojanagaroon S, Kittakoop P, Wongpornchai S (2012) Adaptogenic-active components from Kaempferia parviflora rhizomes. Food Chem 132: 1150-1155. doi: 10.1016/j.foodchem.2011.11.025
- Rivas da Silva AC, Lopes PM, Barros de Azevedo MM, Costa DCM, Alviano CS, Alviano DS (2012) Biological Activities of α-Pinene and β-Pinene Enantiomers. Molecules 17: 6305-6316. doi:10.3390/molecules17066305
- Hachlafi NE, Aenniz T, Menyiy NE, Baaboua AE, Omari NE, balahbib A, Shriati MA, Zengin G, Fikri-Benbrahim K, Bouyahya A (2021) In vitro and in vivo biological investigations of camphene and its mechanism insights: A review. Food Reviews International 1-28. doi: 10.1080/87559129.2021.1936007
- Nguyen VN, Nguyen D-M-C, Seo D-J, Park R-D, Jung W-J (2009) Antimycotic activities of Cinnamon-derived compounds against Rhizoctonia solani in vitro. BioControl 54: 697-707. doi: 10.1007/s10526-009-9220-2
- Wang Y, Wang M, Li M, Zhao T, Zhou L (2021) Cinnamaldehyde inhibits the growth of Phytophthora capsici through disturbing metabolic homoeostasis. PeerJ 9: e11339. doi: 10.7717/peerj.11339
- Kadoglidou K, Lagopodi A, Karamanoli K, Vokou D, Bardas GA, Menexes G, Constantinidoun HIA (2011) Inhibitory and stimulatory effects of essential oils and individual monoterpenoids on growth and sporulation of four soil-borne fungal isolates of Aspergillus terreus, Fusarium oxysporum, Penicillium expansum, and Verticillium dahliae. Eur J Plant Pathol 130: 297-309. doi: 10.1007/s10658-011-9754-x