References
- ASTM (2000), Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D-4254-00. West Conshohocken, PA, USA.
- ASTM (2017), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM D2487-17. West Conshohocken, PA, USA.
- Boulfoul, K., Hammoud, F. and Abbeche, K. (2020), "Numerical study on the optimal position of a pile for stabilization purpose of a slope", Geomech. Eng., 21(5), 401-411. https://doi.org/10.12989/gae.2020.21.5.401.
- CGS (2006), (Canadian Geotechnical Society), Canadian foundation engineering manual, 4th Ed., Richmond, BC, Canada.
- Dehghanbanadaki, A., Motamedi, S. and Kamarudin, A. (2020), "FEM-based modelling of stabilized fibrous peat by endbearing cement deep mixing columns", Geomech. Eng., 20(1), 75-86. https://doi.org/10.12989/gae.2020.20.1.075.
- Frydman, S. (2000), "Shear strength of Israeli soils", Isr. J. Earth Sci., 49(2), 55-64. https://doi.org/10.1560/45MG-XCEX-P963-VANL
- Gao, Y. and Wang, Y.H. (2014), "Experimental and DEM examination of K0 in sand under different loading conditions", J. Geotech. Geoenviron. Eng., 140(5). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001095.
- Golpasand, M.R.B., Do, N.A., Dias, D. and Nikudel, M.R. (2018), "Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling", Geomech. Eng., 16(6), 643-654. https://doi.org/10.12989/gae.2018.16.6.643.
- Gu, X., Hu, J. and Huang, M. (2015), "K0 of granular soils: a particulate approach", Granular Matter., https://doi.org/10.1007/s10035-015-0588-7.
- Gu, X., Hu, J., Huang, M. and Yang, J. (2018), "Discrete element analysis of the K0 of granular soil and its relation to small strain shear stiffness", Int. J. Geomech. - ASCE, 18(3). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001102.
- Hossain, A.M. and Andrus, R.D. (2016), "At-rest lateral stress coefficient in sands from common field methods", J. Geotech. Geoenviron. Eng., 142(12). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001560.
- ISI (Israel Standards Institute) (2000), Israel Standard 940, Part 1: Geotechnical design: Geotechnics and foundations for civil engineering. Tel Aviv, Israel.
- Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hung. Archit. Engrs., 78(22), 355-358 (in Hungarian).
- Mansouri, H. and Asghari-Kaljahi, E. (2019), "Two dimensional finite element modeling of Tabriz metro underground station L2-S17 in the marly layers", Geomech. Eng., 19(4), 315-327. https://doi.org/10.12989/gae.2019.19.4.315.
- Mayne, P.W. and Kulhawy, F.H. (1982), "K0-OCR relationships in soil", J. Geotech. Div. - ASCE, 108(6), 851-872. https://doi.org/10.1061/AJGEB6.0001306
- Michalowski, R.L. (2005), "Coefficient of earth pressure at rest", J. Geotech. Geoenviron. Eng., 131(11), 1429-1433. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1429)
- Schmidt, B. (1966), Discussion of 'Earth pressures at rest related to stress history' (Brooker & Ireland, 1965), Can. Geotech. J., 3(4), 239-242. https://doi.org/10.1139/t66-028
- Talesnick, M. (2005), "Measuring soil contact pressure on a solid boundary and quantifying soil arching", Geotech. Test. J. ASTM, 28(2), 171-179. https://doi.org/10.1520/GTJ12484
- Talesnick, M. (2012), "A different approach and result to the measurement of K0 of granular soils", Geotechnique, 62(11), 1041-1045. https://doi.org/10.1680/geot.11.P.009.
- Talesnick, M., Ringel, M. and Avraham, R. (2014), "Measurement of contact soil pressure in physical modeling of soil-structure interaction", Int. J. Phys. Model. Geotech., 14(1), 3-12, https://doi.org/10.1680/ijpmg.13.00008.
- Talesnick, M. and Frydman, S. (2019), "Pathology of a research error: Coefficient of earth pressure at-rest for cohesionless soils", Proceedings of the 72nd Annual Conference of the Canadian Geotechnical Society, GeoSt.John's 2019, St John's NFLD, Canada, October.
- Talesnick, M. and Ringel, M. (2020), "Development of a soil boundary friction meter: application to scale model testing", Int. J. Phys. Model. Geotech., 22(1), 26-37. https://doi-org/10.1680/jphmg.20.00019.
- Talesnick, M., Nachum, S. and Frydman, S. (2020), " K0 determination using improved experimental technique", Geotechnique, https://doi.org/10.1680/jgeot.19.P.019.
- Talesnick, M. and Bolton, M.D. (2020), "Effect of structural boundaries and stress history on at-rest soil pressure of sand", Int. J. Phys. Model. Geotech., 21(4), 1-10. https://doi.org/10.1680/jphmg.19.00049.
- Tognon, A.R., Rowe, R.K. and Brachman, R.W.I. (1999), "Evaluation of side wall friction for a buried pipe testing facility", Geotext. Geomembranes, 17(4), 193-212. https://doi.org/10.1016/S0266-1144(99)00004-7.
- Watcharasawe, K., Jongpradist, P., Kitiyodom, P. and Matsumoto, T. (2021), "Measurement and analysis of load sharing between piles and raft in a pile foundation in clay", Geomech. Eng., 24(6), 559-572. https://doi.org/10.12989/gae.2021.24.6.559.
- Yazici, M.F. and Keskin, S.N. (2021), "Optimum design of multianchored Larssen type sheet pipe wall for temporary construction works", Geomech. Eng., 27(1), 1-11. https://doi.org/10.12989/gae.2021.27.1.001.
- Zheng, J., Li, L. and Daviault, M. (2021), "Experimental study of the effectiveness of lubricants in reducing sidewall friction", Int. J. Geomech. - ASCE, 21(5), https://doi.org/10.1061/(ASCE)GM.1943-5622.0002003.