DOI QR코드

DOI QR Code

Study on mechanical properties of Yellow River silt solidified by MICP technology

  • Yuke, Wang (College of Water conservancy Science and Engineering, Zhengzhou University) ;
  • Rui, Jiang (College of Water conservancy Science and Engineering, Zhengzhou University) ;
  • Gan, Wang (College of Water conservancy Science and Engineering, Zhengzhou University) ;
  • Meiju, Jiao (College of Water conservancy Science and Engineering, Zhengzhou University)
  • Received : 2021.12.06
  • Accepted : 2023.01.19
  • Published : 2023.02.10

Abstract

With the development of infrastructure, there is a critical shortage of filling materials all over the word. However, a large amount of silt accumulated in the lower reaches of the Yellow River is treated as waste every year, which will cause environmental pollution and waste of resources. Microbial induced calcium carbonate precipitation (MICP) technology, with the advantage of efficient, economical and environmentally friendly protection, is selected to solidify the abandoned Yellow River silt with poor mechanical properties into high-quality filling material in this paper. Based on unconfined compressive strength (UCS) test, determination of calcium carbonate (CaCO3) content and scanning electron microscope (SEM) test, the effects of cementation solution concentration, treatment times and relative density on the solidification effect were studied. The results show that the loose silt particles can be effectively solidified together into filling material with excellent mechanical properties through MICP technology. The concentration of cementation solution have a significant impact on the solidification effect, and the reasonable concentration of cementation solution is 1.5 mol/L. With the increase of treatment times, the pores in the soil are filled with CaCO3, and the UCS of the specimens after 10 times of treatment can reach 2.5 MPa with a relatively high CaCO3 content of 26%. With the improvement of treatment degree, the influence of relative density on the UCS increases gradually. Microscopic analysis revealed that after MICP reinforcement, CaCO3 adhered to the surface of soil particles and cemented with each other to form a dense structure.

Keywords

Acknowledgement

The work present in this paper was supported by National Natural Science Foundation of China (Grant No. 52178369; 52109140); Key Projects of High Schools of Henan province (20A560021); Natural Science Foundation of Henan Province (202300410424); Youth Talent Promotion Project of Henan Province (2021HYTP016); Key Specialized Research and Development Breakthrough in Henan Province (212102310977); China Postdoctoral Science Foundation (2019M662533). These financial supports are gratefully acknowledged.

References

  1. Atashgahi, S., Tabarsa, A., Shahryari, A. and Hosseini, S. (2020), "Effect of carbonate precipitating bacteria on strength and hydraulic characteristics of loess soil", Bull. Eng. Geol. Environ., 79(9), 4749-4763. https://doi.org/10.1007/s10064-020-01857-0.
  2. Atefeh, Z., Xiao, P., Baumer, T., Carey, T.J., Sawyer, B., Dejong, J.T. and Boulanger, R.W. (2021), "Mitigation of liquefaction triggering and foundation settlement by MICP treatment", J. Geotech. Geoenviron. Eng., 147(10). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002596.
  3. Burbank, M., Weaver, T., Green, T., Williams, B. and Crawford, R. (2011), "Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils", Geomicrobio. J., 28(4). https://doi.org/10.1080/01490451.2010.499929.
  4. Cardoso, R., Pires, I., Duarte, S. and Monteiro, G. (2018), "Effects of clay's chemical interactions on biocementation", Appl. Clay Sci., 156, 96-103. https://doi.org/10.1016/j.clay.2018.01.035.
  5. Choi, S., Chu, J. and Kwon, T. (2019), "Effect of chemical concentrations on strengthand crystal size of biocemented sand", Geomech. Eng., 17(5), 465-473. https://doi.org/10.12989/gae.2019.17.5.465.
  6. Dagliya, M., Satyam, N. and Garg, A. (2022b), "Experimental Study on Optimization of Cementation Solution for Wind-Erosion Resistance Using the MICP Method", Sustainability (Switzerland), 14. https://doi.org/10.3390/su14031770.
  7. Dagliya, M., Satyam, N. and Garg, A. (2022c), "Biopolymer based stabilization of Indian desert soil against wind-induced erosion", Acta Geophysica. https://doi.org/10.1007/s11600-022-00905-5.
  8. Dagliya, M., Satyam, N., Sharma, M. and Garg, A. (2022a), "Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation", J. Rock Mech. Geotech. Eng., 1-12.  https://doi.org/10.1016/j.jrmge.2021.12.008.
  9. DeJong, J., Mortensen, B., Martinez, B.C. and Nelson, D.C. (2008), "Bio-mediated soil improvement", Ecological Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
  10. Deng, X., Yuan, Z., Li, Y.u., Liu, H., Feng, J. and de Wit, B. (2020), "Experimental study on the mechanical properties of microbial mixed backfill", Constr. Build. Mater., 265, 120643. https://doi.org/10.1016/j.conbuildmat.2020.120643.
  11. Hang, L., Gao, Y., He, J. and Chu, J. (2019), "Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions", Geomech. Eng., 17(5), 497-505. https://doi.org/10.12989/gae.2019.17.5.497.
  12. Harkes, M.P., van Paassen, L.A., Booster, J.L., Whiffin, V.S. and van Loosdrecht, M.C.M. (2009), "Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement", Ecological Eng., 36(2), 112-117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
  13. Jiang, N. and Soga, K. (2017), "The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures", Geotechnique, 67(1), 42-55. https://doi.org/10.1680/jgeot.15.P.182.
  14. Kannan, K., Bindu, J. and Vinod, P. (2020), "Engineering behaviour of MICP treated marine clays", Mar. Georesour. Geotech., 38(7), 1-9. https://doi.org/10.1080/1064119X.2020.1728791.
  15. Khan, M., Amarakoon, G., Shimazaki, S. and Kawasaki, S. (2015), "Coral sand solidification test based on microbially induced carbonate precipitation using ureolytic bacteria", Mater. Transactions, 56(10), 1725-1732. https://doi.org/10.2320/matertrans.M-M2015820.
  16. Li, D., Tian, K., Zhang, K., Wu, Y. and Nie, K. (2018), "Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation", Constr. Build. Mater., 172, 251-262. https://doi.org/10.1016/j.conbuildmat.2018.03.255.
  17. Liu, B., Xie, Y.H., Tang, C.S., Pan, X.H., Jiang, N.J. and Singh, D. (2021), "Bio-mediated method for improving surface erosion resistance of clayey soils", Eng. Geol., 293(19), 106295. https://doi.org/10.1016/j.enggeo.2021.106295.
  18. Liu, L., Liu, H., Xiao, Y., Chu, J., Xiao, P. and Wang, Y. (2018), "Biocementation of calcareous sand using soluble calcium derived from calcareous sand", Bull. Eng. Geol. Environ., 77(4), 1781-1791. https://doi.org/10.1007/s10064-017-1106-4.
  19. Liu, X., Fan, J., Jing, Y.U. and Xin, G. (2021), "Solidification of loess using microbial induced carbonate precipitation", J. Mountain Sci., 18(1), 265-274. https://doi.org/10.1007/s11629-020-6154-8.
  20. Lv, Y. (2021), "Experimental study on mechanical and permeability properties of fiber-reinforced bio-cement sand with different gradation", Chongqing University. (in Chinese).
  21. Mahawish, A., Bouazza, A. and Gates, W. (2019), "Unconfined compressive strength and visualization of the microstructure of coarse Sand subjected to different biocementation levels", J. Geotech. Geoenviron. Eng., 145(8), 1943-1956. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002066.
  22. Meng, H., Gao, Y., He, J., Qi, Y. and Hang, L. (2021), "Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests", Geoderma, 383. https://doi.org/10.1016/j.geoderma.2020.114723.
  23. Montoya, B. and DeJong, J. (2015), "Stress-strain behavior of sands cemented by microbially induced calcite precipitation", J. Geotech. Geoenviron. Eng., 141(6), 1943-1953. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
  24. Montoya, B., Dejong, J. and Boulanger, R. (2013), "Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation", Geotechnique, 63(4), 302-312. https://doi.org/10.1680/geot.SIP13.P.019.
  25. Mwandira, W., Nakashima, K. and Kawasaki, S. (2017), "Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand", Ecological Eng., 109, 57-64. https://doi.org/10.1016/j.ecoleng.2017.09.0111.
  26. Paassen, L.A., Ghose, R., van der Linden, T.J.M., van der Star, W.R.L. and van Loosdrecht, M.C.M. (2010), "Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment", J. Geotech. Geoenviron. Eng., 136(12), 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
  27. Sharma, M., Satyam, N. and Reddy, K.R. (2020), "Strength enhancement and lead immobilization of sand using consortia of bacteria and Blue-Green Algae", J Hazardous, Toxic, and Radioactive Waste (ASCE), 24, 04020049. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000548.
  28. Sharma, M., Satyam, N. and Reddy, K.R. (2021b), "Effect of freeze-thaw cycles on engineering properties of biocemented sand under different treatment conditions", Eng. Geol., 284, 106022. https://doi.org/10.1016/j.enggeo.2021.106022.
  29. Sharma, M., Satyam, N. and Reddy, K.R. (2022a), "Large-scale spatial characterization and liquefaction resistance of sand by hybrid bacteria induced biocementation", Eng. Geol., 302, 106635. https://doi.org/10.1016/j.enggeo.2022.106635.
  30. Sharma, M., Satyam, N. and Reddy, K.R. (2022b), "Liquefaction resistance of biotreated sand before and after exposing to weathering conditions", Indian Geotech. J., 52, 328-340. https://doi.org/10.1007/s40098-021-00576-x.
  31. Sharma, M., Satyam, N., Reddy, K.R. and Chrysochoou, M. (2022c), "Multiple heavy metal immobilization and strength improvement of contaminated soil using bio-mediated calcite precipitation technique", Environ. Sci. Pollut. Res., https://doi.org/10.1007/s11356-022-19551-x.
  32. Simatupang, M., Okamura, M., Hayashi, K. and Yasuhara, H. (2018), "Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation", Soil Dyn. Earthq. Eng., 115, 710-718. https://doi.org/10.1016/j.soildyn.2018.09.027.
  33. Teng, F., Sie, Y. and Ouedraogo, C. (2021), "Strength improvement in silty clay by microbial-induced calcite precipitation", Bull. Eng. Geol. Environ., 80(8), 1-13. https://doi.org/10.1007/s10064-021-02308-0.
  34. Wang, Y., Cao, T., Gao, Y. and Shao, J. (2022a), "Experimental study on liquefaction characteristics of saturated Yellow River silt under cycles loading", Soil Dyn. Earthq. Eng., 163, 107457. https://doi.org/10.1016/j.soildyn.2022.107457.
  35. Wang, Y., Wang, G., Wan, Y., Yu, X., Zhao, J. and Shao, J. (2022b), "Recycling of dredged river silt reinforced by an eco-friendly technology as microbial induced calcium carbonate precipitation (MICP)", Soils Found., 62, 101216. https://doi.org/10.1016/j.sandf.2022.101216.
  36. Whiffin, V.S. (2004), "Microbial CaCO3 precipitation for the production of biocement", Perth West Australia: Morduch University.
  37. Xiao, Y., Chen, H., Stuedlein, A., Evans, T., Chu, J., Cheng, L., Jiang, N., Lin, H., Liu, H. and Aboel-naga, H.M. (2020), "Restraint of particle breakage by biotreatment method", J. Geotech. Geoenviron. Eng., 146(11). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
  38. Zamani, A., Xiao, P., Baumer, T. and Caray, T. (2021), "Mitigation of Liquefaction Triggering and Foundation Settlement by MICP Treatment", J. Geotech. Geoenviron. Eng., 147, 04021099. https://doi.org/10.1061/(asce)gt.1943-5606.0002596.
  39. Zhao, J., Tong, W., Shan, Y., Yuan, J., Peng, Q. and Ling, J. (2021), "Effects of different types of fibers on the physical and mechanical properties of MICP-treated calcareous sand", Materials, 14(2). https://doi.org/10.3390/ma14020268.
  40. Zomorodian, S.M.A., Ghaffari, H. and Kelly, B.C. (2019), "Stabilisation of crustal sand layer using biocementation technique for wind erosion control", Aeolian Res., 40, 34-41. https://doi.org/10.1016/j.aeolia.2019.06.001.