DOI QR코드

DOI QR Code

연령별 대뇌 피질 두께의 성별 차이에 대한 형태학적 분석

Morphological Analysis of Age-related Gender Differences in Cortical Thickness

  • 서해석 (대구가톨릭대학교 의공학과) ;
  • 김수현 (대구가톨릭대학교 의공학과) ;
  • 윤의철 (대구가톨릭대학교 의공학과)
  • Haeseok, Seo (Department of Biomedical Engineering. Daegu Catholic University) ;
  • Suhyun, Kim (Department of Biomedical Engineering. Daegu Catholic University) ;
  • Uicheul, Yoon (Department of Biomedical Engineering. Daegu Catholic University)
  • 투고 : 2023.01.26
  • 심사 : 2023.02.14
  • 발행 : 2023.02.28

초록

There have been many studies from the genetic system to physical activity and emotional expression such that there are gender differences. The purpose of this study was to determine how the structural characteristics of cortical thickness differ between males and females. This study used data from the Human Connectome Project (HCP). To analyze age-specific sexual dimorphisms of cortical thickness, selected 8-80 year old subjects were divided into five detailed age range groups according to each criterion. A total of 1,700 individual brain MRI T1 data were registered in stereotaxic space for analysis and classified into white matter (WM), gray matter (GM), and cerebro-spinal fluid (CSF). For surface-based analysis, the WM/GM surface was reconstructed from a spherical polygon model with 40962 vertices per hemisphere, and each vertex was extended to the GM/CSF boundary. Cortical thickness was then measured between each vertex using the t-link method. In the statistical analysis, intracranial volume was used as a covariate to exclude the effect of the difference in brain size of each individual, and the result of using age as a covariate was added to confirm the age effect within each group. Gender differences in cortical thickness had significant results by group. This may be an index to explain diseases with sexual dimorphism in prevalence or become a basis for explaining the characteristics of each sex that appear in behavior, personality, and aging. Therefore, the results of our study could be a criterion for age classification in future studies and for understanding 'normal' sexual dimorphism.

키워드

과제정보

이 결과물은 2020년도 대구가톨릭대학교 학술 연구비 지원에 의한 것임.

참고문헌

  1. Heyward VH, Johannes-Ellis S, Romer JF. Gender differences in strength. Res Q Exerc Sport. 1986;57(2):154-159. https://doi.org/10.1080/02701367.1986.10762192
  2. TAYLOR RW, GOLD E, MANNING P, GOULDING A. Gender differences in body fat content are present well before puberty. Int J Obes (Lond). 1997;21(11):1082-1084. https://doi.org/10.1038/sj.ijo.0800522
  3. Else-Quest NM, Hyde JS, Goldsmith HH, Hulle CAV. Gender differences in temperament: a meta-analysis. Psychol Bull. 2006;132:33-72. https://doi.org/10.1037/0033-2909.132.1.33
  4. Alexander GM. An evolutionary perspective of sex-typed toy preferences: Pink, blue, and the brain. Arch Sex Behav. 2003;32:7-14. https://doi.org/10.1023/A:1021833110722
  5. Kendler KS, Gardner CO. Sex differences in the pathways to major depression: A study of opposite-sex twin pairs. Am J Psychiatry. 2014;171(4):426-435. https://doi.org/10.1176/appi.ajp.2013.13101375
  6. BISCHOPING K. Gender differences in conversation topics, 1922-1990. Sex roles. 1993;28:1-18. https://doi.org/10.1007/BF00289744
  7. Remes O, Brayne C, Linde R, Lafortune L. A systematic review of reviews on the prevalence of anxiety disorders in adult populations. Brain Behav. 2016;6(7):e00497.
  8. Smink FRE, van Hoeken D, Oldehinkel AJ, Hoek HW. Prevalence and severity of DSM-5 eating disorders in a community cohort of adolescents. Int J Eat Disord. 2014;47(6):610-619. https://doi.org/10.1002/eat.22316
  9. Avenevoli S, PhD, Swendsen J, PhD, He J, MS, Burstein M, PhD, Merikangas KR, PhD. Major depression in the national comorbidity Survey-Adolescent supplement: Prevalence, correlates, and treatment. J Am Acad Child Adolesc Psychiatry. 2015;54(1):37-44. https://doi.org/10.1016/j.jaac.2014.10.010
  10. Willcutt EG. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review. Neurotherapeutics. 2012;9(3):490-499. https://doi.org/10.1007/s13311-012-0135-8
  11. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the united states (2010-2050) estimated using the 2010 census. Neurology. 2013;80(19):1778-1783. https://doi.org/10.1212/WNL.0b013e31828726f5
  12. Reitz C, Brayne C, Mayeux R. Epidemiology of alzheimer disease. Nat Rev Neurol. 2011;7(3):137-152. https://doi.org/10.1038/nrneurol.2011.2
  13. Wiederholt WC, Cahn D, Butters NM, Salmon DP, Kritz-Silverstein D, Barrett-Connor E. Effects of age, gender and education on selected neuropsychological tests in an elderly community cohort. J Am Geriatr Soc. 1993;41(6):639-647. https://doi.org/10.1111/j.1532-5415.1993.tb06738.x
  14. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage. 1999;9(2):179-194. https://doi.org/10.1006/nimg.1998.0395
  15. Dale AM, Sereno MI. Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J Cogn Neurosci. 1993;5(2):162-176. https://doi.org/10.1162/jocn.1993.5.2.162
  16. Luders E, Narr KL, Thompson PM, Rex DE, Woods RP, DeLuca H, et al. Gender effects on cortical thickness and the influence of scaling. Hum Brain Mapp. 2006;27(4):314-324. https://doi.org/10.1002/hbm.20187
  17. Sowell ER, Peterson BS, Kan E, Woods RP, Yoshii J, Bansal R, et al. Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb Cortex. 2006;17(7):1550-1560. https://doi.org/10.1093/cercor/bhl066
  18. Gautam P, Cherbuin N, Sachdev PS, Wen W, Anstey KJ. Sex differences in cortical thickness in middle aged and early oldaged adults: Personality and total health through life study. Neuroradiology. 2013;55:697-707. https://doi.org/10.1007/s00234-013-1144-y
  19. Mutlu AK, Schneider M, Debbane M, Badoud D, Eliez S, Schaer M. Sex differences in thickness, and folding developments throughout the cortex. NeuroImage. 2013;82:200-207. https://doi.org/10.1016/j.neuroimage.2013.05.076
  20. DeLacoste-Utamsing C, Holloway RL. Sexual dimorphism in the human corpus callosum. Science. 1982;216(4553):1431-1432. https://doi.org/10.1126/science.7089533
  21. Allen LS, Richey MF, Chai YM, Gorski RA. Sex differences in the corpus callosum of the living human being. J Neurosci. 1991;11(4):933-942. https://doi.org/10.1523/JNEUROSCI.11-04-00933.1991
  22. Witelson SF, Glezer II, Kigar DL. Women have greater density of neurons in posterior temporal cortex. J Neurosci. 1995;15(5):3418-3428. https://doi.org/10.1523/JNEUROSCI.15-05-03418.1995
  23. Giedd JN, Castellanos FX, Rajapakse JC, Vaituzis AC, Rapoport JL. Sexual dimorphism of the developing human brain. Prog Neuropsychopharmacol Biol Psychiatry. 1997;21(8):1185-1201. https://doi.org/10.1016/S0278-5846(97)00158-9
  24. Rabinowicz T, Dean DE, McDonald-Comber Petetot J, de Courten-Myers GM. Gender differences in the human cerebral cortex: More neurons in males; more processes in females. J Child Neurol. 1999;14(2):98-107. https://doi.org/10.1177/088307389901400207
  25. Nopoulos P, Flaum M, O'leary D, Andreasen NC. Sexual dimorphism in the human brain: Evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res Neuroimaging. 2000;98(1):1-13. https://doi.org/10.1016/S0925-4927(99)00044-X
  26. Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS, et al. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex. 2001;11(6):490-497. https://doi.org/10.1093/cercor/11.6.490
  27. Allen JS, Damasio H, Grabowski TJ, Bruss J, Zhang W. Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. NeuroImage. 2003;18(4):880-894. https://doi.org/10.1016/S1053-8119(03)00034-X
  28. Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, et al. Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage. 2007;36(4):1065-1073. https://doi.org/10.1016/j.neuroimage.2007.03.053
  29. Im K, Lee J, Lee J, Shin Y, Kim IY, Kwon JS, et al. Gender difference analysis of cortical thickness in healthy young adults with surface-based methods. NeuroImage. 2006;31(1):31-38. https://doi.org/10.1016/j.neuroimage.2005.11.042
  30. Somerville LH, Bookheimer SY, Buckner RL, Burgess GC, Curtiss SW, Dapretto M, et al. The lifespan human connectome project in development: A large-scale study of brain connectivity development in 5-21 year olds. NeuroImage. 2018;183:456-468. https://doi.org/10.1016/j.neuroimage.2018.08.050
  31. Bookheimer SY, Salat DH, Terpstra M, Ances BM, Barch DM, Buckner RL, et al. The lifespan human connectome project in aging: An overview. NeuroImage. 2019;185:335-348. https://doi.org/10.1016/j.neuroimage.2018.10.009
  32. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. The WU-minn human connectome project: An overview. NeuroImage. 2013;80:62-79. https://doi.org/10.1016/j.neuroimage.2013.05.041
  33. 권중돈. 인간 행동과 사회환경. 서울: 학지사; 2014.
  34. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998;17(1):87-97. https://doi.org/10.1109/42.668698
  35. COLLINS DL, NEELIN P, PETERS TM, EVANS AC. Automatic 3D intersubject registration of MR volumetric data in standardized talairach space. J Comput Assist Tomogr. 1994;18(2):192-205. https://doi.org/10.1097/00004728-199403000-00005
  36. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, et al. A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM). Philos Trans R Soc Lond B Biol Sci. 2001;356(1412):1293-1322. https://doi.org/10.1098/rstb.2001.0915
  37. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143-155. https://doi.org/10.1002/hbm.10062
  38. Zijdenbos AP, Forghani R, Evans AC. Automatic pipeline analysis of 3-D MRI data for clinical trials: Application to multiple sclerosis. IEEE Trans Med Imaging. 2002;21(10):1280-1291. https://doi.org/10.1109/TMI.2002.806283
  39. Tohka J, Zijdenbos A, Evans A. Fast and robust parameter estimation for statistical partial volume models in brain MRI. NeuroImage. 2004;23(1):84-97. https://doi.org/10.1016/j.neuroimage.2004.05.007
  40. Yun E, Kang K, Yoon U. Correlation analysis between gait pattern and structural features of cerebral cortex in patients with idiopathic normal pressure hydrocephalus. Journal of Biomedical Engineering Research. 2021;42(6):295-303.
  41. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, et al. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a laplacian map and partial volume effect classification. NeuroImage. 2005;27(1):210-221. https://doi.org/10.1016/j.neuroimage.2005.03.036
  42. MacDonald D, Kabani N, Avis D, Evans AC. Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage. 2000;12(3):340-356. https://doi.org/10.1006/nimg.1999.0534
  43. Lyttelton O, Boucher M, Robbins S, Evans A. An unbiased iterative group registration template for cortical surface analysis. Neuroimage. 2007;34(4):1535-1544. https://doi.org/10.1016/j.neuroimage.2006.10.041
  44. Driscoll I, Davatzikos C, An Y, Wu X, Shen D, Kraut M, et al. Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology. 2009;72(22):1906-1913. https://doi.org/10.1212/WNL.0b013e3181a82634
  45. Kochunov P, Glahn DC, Lancaster J, Thompson PM, Kochunov V, Rogers B, et al. Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage. 2011;58(1):41-49. https://doi.org/10.1016/j.neuroimage.2011.05.050
  46. Garey LJ. Brodmann's: Localisation in the Cerebral Cortex. London: Smith-Gordon Company; 1994.
  47. Kaas JH. Evolution of somatosensory and motor cortex in primates. Anat Rec (Hoboken). 2004;281(1):1148-1156. https://doi.org/10.1002/ar.a.20120
  48. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K. Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage. 2001;13(4):684-701. https://doi.org/10.1006/nimg.2000.0715
  49. Schmolesky M. The primary visual cortex. In: Kolb H, Fernandez E, Nelson R, editors. Webvision: The Organization of the Retina and Visual System [Internet]; 2005.
  50. Bornstein WS. Cortical representation of taste in man and monkey: II. the localization of the cortical taste area in man and a method of measuring impairment of taste in man. Yale J Biol Med. 1940;13(1):133.
  51. Carter R. The Human Brain Book: An Illustrated Guide to its Structure, Function, and Disorders 3rd ed. London: DK; 2019.
  52. Koenigs M, Grafman J. The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res. 2009;201(2):239-243. https://doi.org/10.1016/j.bbr.2009.03.004
  53. Lawton CA, Hatcher DW. Gender differences in integration of images in visuospatial memory. Sex roles. 2005;53:717-725. https://doi.org/10.1007/s11199-005-7736-1