DOI QR코드

DOI QR Code

Analysis of the COVID-19 Research Trend : Focusing on SCOPUS DB

COVID-19 주요 연구 동향 분석: SCOPUS DB를 중심으로

  • YI, ZHAO (Department of MIS, Chungbuk National University) ;
  • Jinhyeon, Sohn (Department of Business Administration, Sunmoon University)
  • Received : 2022.12.30
  • Accepted : 2023.02.20
  • Published : 2023.02.28

Abstract

The purpose of this study is to identify the major research trends of COVID-19 in recent times. In addition, we would like to use SCOPUS, an overseas academic database provided by Elsevier, to understand the research trends of COVID-19 in the last three years (2020-2022). As a result of frequency analysis, covid 7,248 cases, pandemic 4,974 cases, study 3,313 cases, research 2,137 cases, crisis 1,777 cases appeared in order of importance. As a result of the trend analysis, we found that studies on covid and pandemic are progressing steadily, but those on study, research, and crisis have decreased somewhat recently. As a result of LDA topic modeling analysis, the important topics were found to be 'covid19, pandemic'. This shows that research on COVID-19 is important not only in everyday life, but also in companies and organizations, and therefore in other academic fields besides medicine. When (the study of)COVID-19 becomes more important than ever, there seems to be an ongoing interest in the impact and ramifications of COVID-19 research.

본 논문의 목적은 COVID-19의 최근 주요 연구 동향을 파악하는데 있다. 이에 Elsevier에서 제공하는 해외 학술 DB인 SCOPUS를 활용하여 최근 3년간(2020~2022) COVID-19의 연구 동향을 파악하고자 한다. 빈도 분석 결과, covid가 7,248건, pandemic이 4,974건, study가 3,313건, research가 2,137건, crisis가 1,777건 순으로 그 중요도가 나타났다. 트렌드 분석결과, covid와 pandemic은 꾸준하게 연구가 진행되고 있으나, study, research, crisis는 최근 들어 연구가 다소 감소하고 있는 것으로 나타났다. LDA 토픽 모델링 분석 결과, 중요한 토픽은 'covid19, pandemic' 인 것으로 나타났다. 이는 COVID-19에 대한 연구가 일상생활뿐만이 아니라 기업이나 조직에서도 필요하기 때문에 의학 이외의 다른 학문 분야에서도 중요하다는 것을 보여준다. 특히 COVID-19가 그 어느 때보다도 중요해지는 상황에서 COVID-19의 연구가 미치는 영향 및 파급효과에 관한 관심이 지속적으로 이루어질 것으로 보인다.

Keywords

References

  1. Kim, J., Shin, D., & Kim, H. (2021). Analysis of Major COVID-19 Issues Using Unstructured Big Data. Knowledge Management Research, 22(2), 145-165.
  2. Suh, K. D. (2021). A Study on deduction of important factors for new infectious diseases through big data analysis. Journal of Industrial Convergence, 19(3), 35-40.
  3. Central Disaster Management. Headquarters. (2020). Coronavirus Infectious Disease-19. Central Disaster Management. Headquarters regular briefing
  4. KASOM(2021). Introduction to Big Data. kwangmoonkag.
  5. Dumais, S. (1998). Using SVMs for text categorization. IEEE Intelligent Systems, 13(4), 21-23. https://doi.org/10.1109/5254.671087
  6. Wang, L. L., & Lo, K. (2021). Text mining approaches for dealing with the rapidly expanding literature on COVID-19. Briefings in Bioinformatics, 22(2), 781-799. https://doi.org/10.1093/bib/bbaa296
  7. SDPM(2020). NCS management big data analysis. Wowpass.
  8. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
  9. Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl_1), 5228-5235. https://doi.org/10.1073/pnas.0307752101
  10. Park, E. M., & Seo, J. H. (2020). Analysis of Research Trends in Technology Innovation: Focus on SCOPUS DB. Journal of Convergence for Information Technology, 10(8), 120-126.
  11. Kim, I. G., Park, S. T., Park, S. S., Kim, M. S., Park, J. C., & Jiang, J. (2021). Analysis on Research Trends in Sport Facilities: Focusing on SCOPUS DB. Journal of Industrial Convergence, 19(6), 11-19. https://doi.org/10.22678/JIC.2021.19.6.011
  12. Park, S. T., & Liu, C. (2020). A study on topic models using LDA and Word2Vec in travel route recommendation: focus on convergence travel and tours reviews. Personal and Ubiquitous Computing, 1-17.
  13. Li, G., Dai, J. S., Park, E. M., & Park, S. T. (2017). A study on the service and trend of Fintech security based on text-mining: Focused on the data of Korean online news. Journal of Computer Virology and Hacking Techniques, 13(4), 249-255. https://doi.org/10.1007/s11416-016-0288-9
  14. Ko, M. H., Park, E. M., & Park, S. T. (2018). Mining the open science: Themes and trends 10 years of open science. Journal of Advanced Research in Dynamical and Control Systems, 10(1), 263-270.
  15. Park, S. T., Lee, S. W., & Kang, T. G. (2018). A study on the trend of cloud service and security through text mining technique. International Journal of Engineering & Technology, 7(2.33), 127-132.