과제정보
Elena Volynchikova was supported by the Korean Government Scholarship Program (KGSP) during her PhD study at the Korea University, Seoul, Korea.
참고문헌
- Alaux, P.-L., Cesar, V., Naveau, F., Cranenbrouck, S. and Declerck, S. 2018. Impact of Rhizophagus irregularis MUCL 41833 on disease symptoms caused by Phytophthora infestans in potato grown under field conditions. Crop Prot. 107:26-33. https://doi.org/10.1016/j.cropro.2018.01.003
- Aravind, R., Kumar, A., Eapen, S. J. and Ramana, K. V. 2009. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett. Appl. Microbiol. 48:58-64. https://doi.org/10.1111/j.1472-765X.2008.02486.x
- Arora, N. K., Kim, M. J., Kang, S. C. and Maheshwari, D. K. 2007. Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol. 53:207-212. https://doi.org/10.1139/w06-119
- Barahona, E., Navazo, A., Martinez-Granero, F., Zea-Bonilla, T., Perez-Jimenez, R. M., Martin, M. and Rivilla, R. 2011. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl. Environ. Microbiol. 77:5412-5419. https://doi.org/10.1128/AEM.00320-11
- Barnhoorn, I. and van Dyk, C. 2020. The first report of selected herbicides and fungicides in water and fish from a highly utilized and polluted freshwater urban impoundment. Environ. Sci. Pollut. Res. 27:33393-33398. https://doi.org/10.1007/s11356-020-09930-7
- Barratt, B. I. P., Moran, V. C., Bigler, F. and van Lenteren, J. C. 2018. The status of biological control and recommendations for improving uptake for the future. BioControl 63:155-167. https://doi.org/10.1007/s10526-017-9831-y
- Chemeltorit, P. P., Mutaqin, K. H. and Widodo, W. 2017. Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10-86: a synergistic chili pepper seed treatment for Phytophthora capsici infested soil. Eur. J. Plant Pathol. 147:157-166. https://doi.org/10.1007/s10658-016-0988-5
- Chowdhury, S. P., Khanna, S., Verma, S. C. and Tripathi, A. K. 2004. Molecular diversity of tannic acid degrading bacteria isolated from tannery soil. J. Appl. Microbiol. 97:1210-1219. https://doi.org/10.1111/j.1365-2672.2004.02426.x
- De Vrieze, M., Germanier, F., Vuille, N. and Weisskopf, L. 2018. Combining different potato-associated Pseudomonas strains for improved biocontrol of Phytophthora infestans. Front. Microbiol. 9:2573.
- Dietz, S., Herz, K., Gorzolka, K., Jandt, U., Bruelheide, H. and Scheel, D. 2020. Root exudate composition of grass and forb species in natural grasslands. Sci. Rep. 10:10691.
- Dutta, S. and Lee, Y. H. 2022. High-throughput identification of genes influencing the competitive ability to obtain nutrients and performance of biocontrol in Pseudomonas putida JBC17. Sci. Rep. 12:872.
- Faramarzi, M. A. and Brandl, H. 2006. Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiol. Lett. 259:47-52. https://doi.org/10.1111/j.1574-6968.2006.00245.x
- Gao, S., Wu, H., Yu, X., Qian, L. and Gao, X. 2016. Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol. Control 98:11-17. https://doi.org/10.1016/j.biocontrol.2016.03.011
- Guyer, A., De Vrieze, M., Bonisch, D., Gloor, R., Musa, T., Bodenhausen, N., Bailly, A. and Weisskopf, L. 2015. The anti-Phytophthora effect of selected potato-associated Pseudomonas strains: from the laboratory to the field. Front. Microbiol. 6:1309.
- Hamon, M. A. and Lazazzera, B. A. 2001. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol. 42:1199-1209. https://doi.org/10.1046/j.1365-2958.2001.02709.x
- Hausbeck, M. K. and Lamour, K. H. 2004. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 88:1292-1303. https://doi.org/10.1094/pdis.2004.88.12.1292
- Herrera, H., Fuentes, A., Soto, J., Valadares, R. and Arriagada, C. 2020. Orchid-associated bacteria and their plant growth promotion capabilities. In: Orchids phytochemistry, biology and horticulture: fundamentals and applications, eds. by J.-M. Merillon and H. Kodja, pp. 175-200. Springer, Cham, Switzerland.
- Huang, L., Liu, W., Jiang, Q., Zuo, Y., Su, Y., Zhao, L., Qin, Y. and Yan, Q. 2018. Integration of transcriptomic and proteomic approaches reveals the temperature-dependent virulence of Pseudomonas plecoglossicida. Front. Cell. Infect. Microbiol. 8:207.
- Hunziker, L., Bonisch, D., Groenhagen, U., Bailly, A., Schulz, S. and Weisskopf, L. 2015. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl. Environ. Microbiol. 81:821-830. https://doi.org/10.1128/AEM.02999-14
- Hyder, S., Gondal, A. S., Rizvi, Z. F., Ahmad, R., Alam, M. M., Hannan, A., Ahmed, W., Fatima, N. and Inam-ul-Haq, M. 2020. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annuum L.). Sci. Rep. 10:13859.
- Jeong, J.-J., Park, B. H., Park, H., Choi, I.-G. and Kim, K. D. 2016. Draft genome sequence of Chryseobacterium sp. strain GSE06, a biocontrol endophytic bacterium isolated from cucumber (Cucumis sativus). Genome Announc. 4:e00577-16.
- Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19:250-256. https://doi.org/10.1094/MPMI-19-0250
- Kim, H. S., Sang, M. K., Jeun, Y.-C., Hwang, B. K. and Kim, K. D. 2008. Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper. Crop Prot. 27:436-443. https://doi.org/10.1016/j.cropro.2007.07.013
- Kim, Y. J., Hwang, B. K. and Park, K. W. 1989. Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Dis. 73:745-747. https://doi.org/10.1094/PD-73-0745
- Kohl, J., Kolnaar, R. and Ravensberg, W. J. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10:845.
- Levene, H. 1960. Contributions to probability and statistics: essays in honor of harold hotelling. Stanford University Press, Stanford, CA, USA. 517 pp.
- Li, S., Zhang, N., Zhang, Z., Luo, J., Shen, B., Zhang, R. and Shen, Q. 2013. Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol. Fertil. Soils 49:295-303. https://doi.org/10.1007/s00374-012-0718-x
- Li, Y., Feng, X., Wang, X., Zheng, L. and Liu, H. 2020. Inhibitory effects of Bacillus licheniformis BL06 on Phytophthora capsici in pepper by multiple modes of action. Biol. Control 144:104210.
- Lim, J.-H. and Kim, S.-D. 2010. Biocontrol of Phytophthora blight of red pepper caused by Phytophthora capsici using Bacillus subtilis AH18 and B. licheniformis K11 formulations. J. Korean Soc. Appl. Biol. Chem. 53:766-773. https://doi.org/10.3839/jksabc.2010.116
- Ma, L., Zheng, S. C., Zhang, T. K., Liu, Z. Y., Wang, X. J., Zhou, X. K., Yang, C. G., Duo, J. L. and Mo, M. H. 2018. Effect of nicotine from tobacco root exudates on chemotaxis, growth, biocontrol efficiency, and colonization by Pseudomonas aeruginosa NXHG29. Antonie Van Leeuwenhoek 111:1237-1257. https://doi.org/10.1007/s10482-018-1035-7
- Mannaa, M., Oh, J. Y. and Kim, K. D. 2017. Biocontrol activity of volatile-producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and aflatoxin production on stored rice grains. Mycobiology 45:213-219. https://doi.org/10.5941/MYCO.2017.45.3.213
- Marley, J., Lu, M. and Bracken, C. 2001. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20:71-75. https://doi.org/10.1023/A:1011254402785
- Meyer, J.-M., Geoffroy, V. A., Baida, N., Gardan, L., Izard, D., Lemanceau, P., Achouak, W. and Palleroni, N. J. 2002. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl. Environ. Microbiol. 68:2745-2753. https://doi.org/10.1128/AEM.68.6.2745-2753.2002
- Ngo, V. A., Wang, S.-L., Nguyen, V. B., Doan, C. T., Tran, T. N., Tran, D. M., Tran, T. D. and Nguyen, A. D. 2020. Phytophthora antagonism of endophytic bacteria isolated from roots of black pepper (Piper nigrum L.). Agronomy 10:286.
- Nishimori, E., Kita-Tsukamoto, K. and Wakabayashi, H. 2000. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int. J. Syst. Evol. Microbiol. 50:83-89. https://doi.org/10.1099/00207713-50-1-83
- Oliver, C., Hernandez, I., Caminal, M., Lara, J. M. and Fernandez, C. 2019. Pseudomonas putida strain B2017 produced as technical grade active ingredient controls fungal and bacterial crop diseases. Biocontrol Sci. Technol. 29:1053-1068. https://doi.org/10.1080/09583157.2019.1645304
- O'Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B. and Kolter, R. 1999. Genetic approaches to study of biofilms. Methods Enzymol. 310:91-109. https://doi.org/10.1016/S0076-6879(99)10008-9
- Park, M. S., Jung, S. R., Lee, M. S., Kim, K. O., Do J. O., Lee, K. H., Kim, S. B. and Bae, K. S. 2005. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J. Microbiol. 43:219-227.
- Parra, G. and Ristaino, J. B. 2001. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis. 85:1069-1075. https://doi.org/10.1094/pdis.2001.85.10.1069
- Raio, A., Brilli, F., Baraldi, R., Neri, L. and Puopolo, G. 2020. Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71. Microbiol. Res. 239:126517.
- Sang, M. K. and Kim, K. D. 2014. Biocontrol activity and root colonization by Pseudomonas corrugata strains CCR04 and CCR80 against Phytophthora blight of pepper. BioControl 59:437-448. https://doi.org/10.1007/s10526-014-9584-9
- Sang, M. K., Shrestha, A., Kim, D.-Y., Park, K., Pak, C. H. and Kim, K. D. 2013. Biocontrol of Phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol. J. 29:154-167. https://doi.org/10.5423/PPJ.OA.07.2012.0104
- Sheoran, N., Nadakkakath, A. V., Munjal, V., Kundu, A., Subaharan, K., Venugopal, V., Rajamma, S., Eapen, S. J. and Kumar, A. 2015. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol. Res. 173:66-78. https://doi.org/10.1016/j.micres.2015.02.001
- Singh, M., Mersie, W. and Brlansky, R. H. 2003. Phytotoxicity of the fungicide metalaxyl and its optical isomers. Plant Dis. 87:1144-1147. https://doi.org/10.1094/pdis.2003.87.9.1144
- Sun, D., Zhuo, T., Hu, X., Fan, X. and Zou, H. 2017. Identification of a Pseudomonas putida as biocontrol agent for tomato bacterial wilt disease. Biol. Control 114:45-50. https://doi.org/10.1016/j.biocontrol.2017.07.015
- Thind, T. S. and Hollomon, D. W. 2018. Thiocarbamate fungicides: reliable tools in resistance management and future outlook. Pest Manag. Sci. 74:1547-1551. https://doi.org/10.1002/ps.4844
- Van de Broek, A., Lambrecht, M. and Vanderleyden, J. 1998. Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599-2606. https://doi.org/10.1099/00221287-144-9-2599
- Vancura, V. and Hovadik, A. 1965. Root exudates of plants: II. Composition of root exudates of some vegetables. Plant Soil 22:21-32. https://doi.org/10.1007/BF01377686
- Vogel, G., Gore, M. A. and Smart, C. D. 2021. Genome-wide association study in New York Phytophthora capsici isolates reveals loci involved in mating type and mefenoxam sensitivity. Phytopathology 111:204-216. https://doi.org/10.1094/PHYTO-04-20-0112-FI
- Volynchikova, E. and Kim, K. D. 2022. Biological control of oomycete soilborne diseases caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in solanaceous crops. Mycobiology 50:269-293. https://doi.org/10.1080/12298093.2022.2136333
- Zhai, Y., Shao, Z., Cai, M., Zheng, L., Li, G., Huang, D., Cheng, W., Thomashow, L. S., Weller, D. M., Yu, Z. and Zhang, J. 2018. Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from Antarctic soil against Meloidogyne incognita. Front. Microbiol. 9:253.