과제정보
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2022R1C1C1012729) and Pusan National University Research Grant, 2021.
참고문헌
- Bauer, S., Mekonnen, D. W., Hartmann, M., Yildiz, I., Janowski, R., Lange, B., Geist, B., Zeier, J. and Schaffner, A. R. 2021. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. Plant Cell 33:714-734. https://doi.org/10.1093/plcell/koaa044
- Bernsdorff, F., Doring, A.-C., Gruner, K., Schuck, S., Brautigam, A. and Zeier, J. 2016. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 28:102-129. https://doi.org/10.1105/tpc.15.00496
- Cai, J., Jozwiak, A., Holoidovsky, L., Meijler, M. M., Meir, S., Rogachev, I. and Aharoni, A. 2021. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. Mol. Plant 14:440-455. https://doi.org/10.1016/j.molp.2020.12.018
- Cameron, R. K., Paiva, N. L., Lamb, C. J. and Dixon, R. A. 1999. Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55:121-130. https://doi.org/10.1006/pmpp.1999.0214
- Cecchini, N. M., Jung, H. W., Engle, N. L., Tschaplinski, T. J. and Greenberg, J. T. 2015. ALD1 regulates basal immune components and early inducible defense responses in Arabidopsis. Mol. Plant-Microbe Interact. 28:455-466. https://doi.org/10.1094/MPMI-06-14-0187-R
- Chanda, B., Xia, Y., Mandal, M. K., Yu, K., Sekine, K.-T., Gao, O.-M., Selote, D., Hu, Y., Stromberg, A., Navarre, D., Kachroo, A. and Kachroo, P. 2011. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat. Genet. 43:421-427. https://doi.org/10.1038/ng.798
- Chassot, C., Buchala, A., Schoonbeek, H.-J., Metraux, J.-P. and Lamotte, O. 2008. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J. 55:555-567. https://doi.org/10.1111/j.1365-313X.2008.03540.x
- Chaturvedi, R., Venables, B., Petros, R. A., Nalam, V., Li, M., Wang, X., Takemoto, L. J. and Shah, J. 2012. An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J. 71:161-172. https://doi.org/10.1111/j.1365-313X.2012.04981.x
- Chen, T.-T., Liu, F.-F., Xiao, D.-W., Jiang, X.-Y., Li, P., Chao, S.- M., Houm, B.-K. and Li, Y.-J. 2020. The Arabidopsis UDPglycosyltransferase 75B1, conjugates abscisic acid and affects plant response to abiotic stresses. Plant Mol. Biol. 102:389-401. https://doi.org/10.1007/s11103-019-00953-4
- Chen, Y.-C., Holmes, E. C., Rajniak, J., Kim, J.-G., Tang, S., Fischer, C. R., Mudgett, M. B. and Sattely, E. S. 2018. Nhydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115:E4920-E4929. https://doi.org/10.1073/pnas.1805291115
- Dean, J. V. and Delaney, S. P. 2008. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol. Plant. 132:417-425. https://doi.org/10.1111/j.1399-3054.2007.01041.x
- El-Shetehy, M., Wang, C., Shine, M. B., Yu, K., Kachroo, A. and Kachroo, P. 2015. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants. Plant Signal. Behav. 10:e998544.
- Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-863. https://doi.org/10.1146/annurev-arplant-042811-105606
- Gao, Q.-M, Yu, K., Xia, Y., Shine, M. B., Wang, C., Navarre, D., Kachroo, A. and Kachroo, P. 2014. Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep. 9:1681-1691. https://doi.org/10.1016/j.celrep.2014.10.069
- Gao, Q.-M., Zhu, S., Kachroo, P. and Kachroo, A. 2015. Signal regulators of systemic acquired resistance. Front. Plant Sci. 6:228.
- Garcion, C., Lohmann, A., Lamodiere, E., Catinot, J., Buchala, A., Doermann, P. and Mctraux, J.-P. 2008. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol. 147:1279-1287. https://doi.org/10.1104/pp.108.119420
- Hartmann, M. and Zeier, J. 2018. L-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. Plant J. 96:5-21. https://doi.org/10.1111/tpj.14037
- Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., Scholten, N., Schuck, S., Brautigam, A., Holzel, T., Ganter, C. and Zeier, J. 2018. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173:456-469. https://doi.org/10.1016/j.cell.2018.02.049
- Holmes, E. C., Chen, Y.-C., Mudgett, M. B. and Sattely, E. S. 2021. Arabidopsis UGT76B1 glycosylates N-hydroxypipecolic acid and inactivates systemic acquired resistance in tomato. Plant Cell 33:750-765. https://doi.org/10.1093/plcell/koaa052
- Holmes, E. C., Chen, Y.-C., Sattely, E. S. and Mudgett, M. B. 2019. An engineered pathway for N-hydroxy-pipecolic acid synthesis enhances systemic acquired resistance in tomato. Sci. Signal. 12:eaay3066.
- Hou, B., Lim, E.-K., Higgins, G. S. and Bowles, D. J. 2004. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem 279:47822-47832. https://doi.org/10.1074/jbc.M409569200
- Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.-H., Yu, J.- Q. and Chen, Z. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 153:1526-1538. https://doi.org/10.1104/pp.110.157370
- Huang, W., Wang, Y., Li, X. and Zhang, Y. 2020. Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Mol. Plant 13:31-41. https://doi.org/10.1016/j.molp.2019.12.008
- Jiang, S.-C., Engle, N. L., Banday, Z. Z., Cecchini, N. M., Jung, H. W., Tschaplinski, T. J. and Greenberg, J. T. 2021. ALD1 accumulation in Arabidopsis epidermal plastids confers local and non-autonomous disease resistance. J. Exp. Bot. 72:2710-2726. https://doi.org/10.1093/jxb/eraa609
- Jin, S.-H., Ma, X.-M., Han, P., Wang, B., Sun, Y.-G., Zhang, G.- Z., Li, Y.-J. and Hou, B.-K. 2013. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS ONE 8:e61705.
- Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
- Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. and Greenberg, J. T. 2009. Priming in systemic plant immunity. Science 324:89-91. https://doi.org/10.1126/science.1170025
- Kachroo, A., Liu, H., Yuan, X., Kurokawa, T. and Kachroo, P. 2022. Systemic acquired resistance-associated transport and metabolic regulation of salicylic acid and glycerol-3-phosphate. Essays Biochem. 66:673-681. https://doi.org/10.1042/EBC20210098
- Kachroo, P., Burch-Smith, T. M. and Grant, M. 2021. An emerging role for chloroplasts in disease and defense. Annu. Rev. Phytopathol. 59:423-445. https://doi.org/10.1146/annurev-phyto-020620-115813
- Koo, Y. M., Heo, A. Y. and Choi, H. W. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36:1-10. https://doi.org/10.5423/PPJ.RW.12.2019.0295
- Klessig, D. F., Choi, H. W. and Dempsey, D. A. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Mol. Plant-Microbe Interact. 31:871-888. https://doi.org/10.1094/MPMI-03-18-0067-CR
- Langlois-Meurinne, M., Gachon, C. M. M. and Saindrenan, P. 2005. Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiol. 139:1890-1901. https://doi.org/10.1104/pp.105.067223
- Li, D., Liu, R., Singh, D., Yuan, X., Kachroo, P. and Raina, R. 2020. JMJ14 encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels. New Phytol. 225:2108-2121. https://doi.org/10.1111/nph.16270
- Lim, G.-H., Liu, H., Yu, K., Liu, R., Shine, M. B., Fernandez, J., Burch-Smith, T., Mobley, J. K., McLetchi, N., Kachroo, A. and Kachroo, P. 2020. The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Sci. Adv. 6:eaaz0478.
- Lim, G.-H., Shine, M. B., de Lorenzo, L., Yu, K., Cui, W., Navarre, D., Hunt, A. G., Lee, J.-Y., Kachroo, A. and Kachroo, P. 2016. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 19:541-549. https://doi.org/10.1016/j.chom.2016.03.006
- Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. and Cameron, R. K. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399-403. https://doi.org/10.1038/nature00962
- Mandal, M. K., Chanda, B., Xia, Y., Yu, K., Sekine, K.-T., Gao, Q.-M., Selote, D., Kachroo, A. and Kachroo, P. 2011. Glycerol-3-phosphate and systemic immunity. Plant Signal. Behav. 6:1871-1874. https://doi.org/10.4161/psb.6.11.17901
- Mishina, T. E. and Zeier, J. 2006. The Arabidopsis flavindependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol. 141:1666-1675.
- Mohnike, L., Rekhter, D., Huang, W., Feussner, K., Tian, H., Herrfurth, C., Zhang, Y. and Feussner, I. 2021. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell 33:735-749. https://doi.org/10.1093/plcell/koaa045
- Navarova, H., Bernsdorff, F., Doring, A.-C. and Zeier, J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123-5141. https://doi.org/10.1105/tpc.112.103564
- Nawrath, C. and Metraux, J.-P. 1999. Salicylic acid induction- deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393-1404. https://doi.org/10.2307/3870970
- Noutoshi, Y., Okazaki, M., Kida, T., Nishina, Y., Morishita, Y., Ogawa, T., Suzuki, H., Shibata, D., Jikumaru, Y., Hanada, A., Kamiya, Y. and Shirasu, K. 2012. Novel plant immunepriming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis. Plant Cell 24:3795-3804. https://doi.org/10.1105/tpc.112.098343
- Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821-1831. https://doi.org/10.1105/tpc.8.10.1821
- Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S. and Klessig, D. F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113-116. https://doi.org/10.1126/science.1147113
- Park, S.-W., Liu, P.-P., Forouhar, F., Vlot, A. C., Tong, L., Tietjen, K. and Klessig, D. F. 2009. Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. J. Biol. Chem. 284:7307-7317. https://doi.org/10.1074/jbc.M807968200
- Rekhter, D., Ludke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V., Wiermer, M., Zhang, Y. and Feussner, I. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365:498-502. https://doi.org/10.1126/science.aaw1720
- Rivas-San Vicente, M. and Plasencia, J. 2011. Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62:3321-3338. https://doi.org/10.1093/jxb/err031
- Schnake, A., Hartmann, M., Schreiber, S., Malik, J., Brahmann, L., Yildiz, I., von Dahlen, J., Rose, L. E., Schaffrath, U. and Zeier, J. 2020. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. J. Exp. Bot. 71:6444-6459. https://doi.org/10.1093/jxb/eraa317
- Shah, J., Chaturvedi, R., Chowdhury, Z., Venables, B. and Petros, R. A. 2014. Signaling by small metabolites in systemic acquired resistance. Plant J. 79:645-658. https://doi.org/10.1111/tpj.12464
- Shan, L. and He, P. 2018. Pipped at the post: pipecolic acid derivative identified as SAR regulator. Cell 173:286-287. https://doi.org/10.1016/j.cell.2018.03.045
- Sharma, S., Shinde, S. and Verslues, P. E. 2013. Functional characterization of an ornithine cyclodeaminase-like protein of Arabidopsis thaliana. BMC Plant Biol. 13:182.
- Shields, A., Shivnauth, V. and Castroverde, C. D. M. 2022. Salicylic acid and N-hydroxypipecolic acid at the fulcrum of the plant immunity-growth equilibrium. Front. Plant Sci. 13:841688.
- Shine, M. B., Gao, Q.-M, Chowda-Reddy, R. V., Singh, A. K., Kachroo, P. and Kachroo, A. 2019. Glycerol-3-phosphate me-diates rhizobia-induced systemic signaling in soybean. Nat. Commun. 10:5303.
- Shine, M. B., Zhang, K., Liu, H., Lim, G.-H., Xia, F., Yu, K., Hunt, A. G., Kachroo, A. and Kachroo, P. 2022. Phased small RNA-mediated systemic signaling in plants. Sci. Adv. 8:eabm8791.
- Song, J. T. 2005. Biochemical characterization of an Arabidopsis glucosyltransferase with high activity toward jasmonic acid. J. Plant Biol. 48:422-428. https://doi.org/10.1007/BF03030584
- Song, J. T. 2006. Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Mol. Cells 22:233-238. https://doi.org/10.1016/S1016-8478(23)17415-2
- Song, J. T., Lu, H., McDowell, J. M. and Greenberg, J. T. 2004. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J. 40:200-212. https://doi.org/10.1111/j.1365-313X.2004.02200.x
- Sun, T., Busta, L., Zhang, Q., Ding, P., Jetter, R. and Zhang, Y. 2018. TGACG-BINDING FACTOR 1 (TGA 1) and TGA 4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD 1) and CALMODULIN-BINDING PROTEIN 60g (CBP 60g). New Phytol. 217:344-354. https://doi.org/10.1111/nph.14780
- Sun, T., Zhang, Y., Li, Y., Zhang, Q., Ding, Y. and Zhang, Y. 2015. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nat. Commun. 6:10159.
- Torrens-Spence, M. P., Bobokalonova, A., Carballo, V., Glinkerman, C. M., Pluskal, T., Shen, A. and Weng, J.-K. 2019. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Mol. Plant 12:1577-1586. https://doi.org/10.1016/j.molp.2019.11.005
- Truman, W. and Glazebrook, J. 2012. Co-expression analysis identifies putative targets for CBP60g and SARD1 regulation. BMC Plant Biol. 12:216.
- Underwood, W. 2012. The plant cell wall: a dynamic barrier against pathogen invasion. Front. Plant Sci. 3:85.
- Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H. and Ryals, J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959-965. https://doi.org/10.1105/tpc.6.7.959
- Vlot, A. C., Dempsey, D. A. and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
- von Saint Paul, V., Zhang, W., Kanawati, B., Geist, B., FausKessler, T., Schmitt-Kopplin, P. and Schaffner, A. R. 2011. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell 23:4124-4145. https://doi.org/10.1105/tpc.111.088443
- Wang, C., El-Shetehy, M., Shine, M. B., Yu, K., Navarre, D., Wendehenne, D., Kachroo, A. and Kachroo, P. 2014. Free radicals mediate systemic acquired resistance. Cell Rep. 7:348-355. https://doi.org/10.1016/j.celrep.2014.03.032
- Wang, C., Liu, R., Lim, G.-H., de Lorenzo, L., Yu, K., Zhang, K., Hunt, A. G., Kachroo, A. and Kachroo, P. 2018. Pipecolic acid confers systemic immunity by regulating free radicals. Sci. Adv. 4:eaar4509.
- Wildermuth, M. C., Dewdney, J., Wu, G. and Ausubel, F. M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562-565. https://doi.org/10.1038/35107108
- Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., De Luca, V. and Despres, C. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1:639-647. https://doi.org/10.1016/j.celrep.2012.05.008
- Xia, Y., Gao, Q.-M., Yu, K., Lapchyk, L., Navarre, D., Hildebrand, D., Kachroo, A. and Kachroo, P. 2009. An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants. Cell Host Microbe 5:151-165. https://doi.org/10.1016/j.chom.2009.01.001
- Xia, Y., Yu, K., Navarre, D., Seebold, K., Kachroo, A. and Kachroo, P. 2010. The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiol. 154:833-846. https://doi.org/10.1104/pp.110.161646
- Yildiz, I., Mantz, M., Hartmann, M., Zeier, T., Kessel, J., Thurow, C., Gatz, C., Petzsch, P., Kohrer, K. and Zeier, J. 2021. The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. Plant Physiol. 186:1679-1705. https://doi.org/10.1093/plphys/kiab166
- Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J. S., Navarre, D., Kachroo, A. and Kachroo, P. 2013. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaicacid-induced systemic immunity. Cell Rep. 3:1266-1278. https://doi.org/10.1016/j.celrep.2013.03.030
- Zeier, J. 2013. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 36:2085-2103. https://doi.org/10.1111/pce.12122
- Zeier, J. 2021. Metabolic regulation of systemic acquired resistance. Curr. Opin. Plant Biol. 62:102050.
- Zhang, J. and Zhou, J.-M. 2010. Plant immunity triggered by microbial molecular signatures. Mol. Plant 3:783-793. https://doi.org/10.1093/mp/ssq035