DOI QR코드

DOI QR Code

Regulation of Salicylic Acid and N-Hydroxy-Pipecolic Acid in Systemic Acquired Resistance

  • Gah-Hyun, Lim (Department of Biological Sciences, Pusan National University)
  • Received : 2022.10.27
  • Accepted : 2022.12.22
  • Published : 2023.02.01

Abstract

In plants, salicylic acid (SA) is a central immune signal that is involved in both local and systemic acquired resistance (SAR). In addition to SA, several other chemical signals are also involved in SAR and these include N-hydroxy-pipecolic acid (NHP), a newly discovered plant metabolite that plays a crucial role in SAR. Recent discoveries have led to a better understanding of the biosynthesis of SA and NHP and their signaling during plant defense responses. Here, I review the recent progress in role of SA and NHP in SAR. In addition, I discuss how these signals cooperate with other SAR-inducing chemicals to regulate SAR.

Keywords

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2022R1C1C1012729) and Pusan National University Research Grant, 2021.

References

  1. Bauer, S., Mekonnen, D. W., Hartmann, M., Yildiz, I., Janowski, R., Lange, B., Geist, B., Zeier, J. and Schaffner, A. R. 2021. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. Plant Cell 33:714-734. https://doi.org/10.1093/plcell/koaa044
  2. Bernsdorff, F., Doring, A.-C., Gruner, K., Schuck, S., Brautigam, A. and Zeier, J. 2016. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 28:102-129. https://doi.org/10.1105/tpc.15.00496
  3. Cai, J., Jozwiak, A., Holoidovsky, L., Meijler, M. M., Meir, S., Rogachev, I. and Aharoni, A. 2021. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. Mol. Plant 14:440-455. https://doi.org/10.1016/j.molp.2020.12.018
  4. Cameron, R. K., Paiva, N. L., Lamb, C. J. and Dixon, R. A. 1999. Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55:121-130. https://doi.org/10.1006/pmpp.1999.0214
  5. Cecchini, N. M., Jung, H. W., Engle, N. L., Tschaplinski, T. J. and Greenberg, J. T. 2015. ALD1 regulates basal immune components and early inducible defense responses in Arabidopsis. Mol. Plant-Microbe Interact. 28:455-466. https://doi.org/10.1094/MPMI-06-14-0187-R
  6. Chanda, B., Xia, Y., Mandal, M. K., Yu, K., Sekine, K.-T., Gao, O.-M., Selote, D., Hu, Y., Stromberg, A., Navarre, D., Kachroo, A. and Kachroo, P. 2011. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat. Genet. 43:421-427. https://doi.org/10.1038/ng.798
  7. Chassot, C., Buchala, A., Schoonbeek, H.-J., Metraux, J.-P. and Lamotte, O. 2008. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J. 55:555-567. https://doi.org/10.1111/j.1365-313X.2008.03540.x
  8. Chaturvedi, R., Venables, B., Petros, R. A., Nalam, V., Li, M., Wang, X., Takemoto, L. J. and Shah, J. 2012. An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J. 71:161-172. https://doi.org/10.1111/j.1365-313X.2012.04981.x
  9. Chen, T.-T., Liu, F.-F., Xiao, D.-W., Jiang, X.-Y., Li, P., Chao, S.- M., Houm, B.-K. and Li, Y.-J. 2020. The Arabidopsis UDPglycosyltransferase 75B1, conjugates abscisic acid and affects plant response to abiotic stresses. Plant Mol. Biol. 102:389-401. https://doi.org/10.1007/s11103-019-00953-4
  10. Chen, Y.-C., Holmes, E. C., Rajniak, J., Kim, J.-G., Tang, S., Fischer, C. R., Mudgett, M. B. and Sattely, E. S. 2018. Nhydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115:E4920-E4929. https://doi.org/10.1073/pnas.1805291115
  11. Dean, J. V. and Delaney, S. P. 2008. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol. Plant. 132:417-425. https://doi.org/10.1111/j.1399-3054.2007.01041.x
  12. El-Shetehy, M., Wang, C., Shine, M. B., Yu, K., Kachroo, A. and Kachroo, P. 2015. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants. Plant Signal. Behav. 10:e998544.
  13. Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-863. https://doi.org/10.1146/annurev-arplant-042811-105606
  14. Gao, Q.-M, Yu, K., Xia, Y., Shine, M. B., Wang, C., Navarre, D., Kachroo, A. and Kachroo, P. 2014. Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep. 9:1681-1691. https://doi.org/10.1016/j.celrep.2014.10.069
  15. Gao, Q.-M., Zhu, S., Kachroo, P. and Kachroo, A. 2015. Signal regulators of systemic acquired resistance. Front. Plant Sci. 6:228.
  16. Garcion, C., Lohmann, A., Lamodiere, E., Catinot, J., Buchala, A., Doermann, P. and Mctraux, J.-P. 2008. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol. 147:1279-1287. https://doi.org/10.1104/pp.108.119420
  17. Hartmann, M. and Zeier, J. 2018. L-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. Plant J. 96:5-21. https://doi.org/10.1111/tpj.14037
  18. Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., Scholten, N., Schuck, S., Brautigam, A., Holzel, T., Ganter, C. and Zeier, J. 2018. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173:456-469. https://doi.org/10.1016/j.cell.2018.02.049
  19. Holmes, E. C., Chen, Y.-C., Mudgett, M. B. and Sattely, E. S. 2021. Arabidopsis UGT76B1 glycosylates N-hydroxypipecolic acid and inactivates systemic acquired resistance in tomato. Plant Cell 33:750-765. https://doi.org/10.1093/plcell/koaa052
  20. Holmes, E. C., Chen, Y.-C., Sattely, E. S. and Mudgett, M. B. 2019. An engineered pathway for N-hydroxy-pipecolic acid synthesis enhances systemic acquired resistance in tomato. Sci. Signal. 12:eaay3066.
  21. Hou, B., Lim, E.-K., Higgins, G. S. and Bowles, D. J. 2004. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem 279:47822-47832. https://doi.org/10.1074/jbc.M409569200
  22. Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.-H., Yu, J.- Q. and Chen, Z. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 153:1526-1538. https://doi.org/10.1104/pp.110.157370
  23. Huang, W., Wang, Y., Li, X. and Zhang, Y. 2020. Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Mol. Plant 13:31-41. https://doi.org/10.1016/j.molp.2019.12.008
  24. Jiang, S.-C., Engle, N. L., Banday, Z. Z., Cecchini, N. M., Jung, H. W., Tschaplinski, T. J. and Greenberg, J. T. 2021. ALD1 accumulation in Arabidopsis epidermal plastids confers local and non-autonomous disease resistance. J. Exp. Bot. 72:2710-2726. https://doi.org/10.1093/jxb/eraa609
  25. Jin, S.-H., Ma, X.-M., Han, P., Wang, B., Sun, Y.-G., Zhang, G.- Z., Li, Y.-J. and Hou, B.-K. 2013. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS ONE 8:e61705.
  26. Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  27. Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. and Greenberg, J. T. 2009. Priming in systemic plant immunity. Science 324:89-91. https://doi.org/10.1126/science.1170025
  28. Kachroo, A., Liu, H., Yuan, X., Kurokawa, T. and Kachroo, P. 2022. Systemic acquired resistance-associated transport and metabolic regulation of salicylic acid and glycerol-3-phosphate. Essays Biochem. 66:673-681. https://doi.org/10.1042/EBC20210098
  29. Kachroo, P., Burch-Smith, T. M. and Grant, M. 2021. An emerging role for chloroplasts in disease and defense. Annu. Rev. Phytopathol. 59:423-445. https://doi.org/10.1146/annurev-phyto-020620-115813
  30. Koo, Y. M., Heo, A. Y. and Choi, H. W. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36:1-10. https://doi.org/10.5423/PPJ.RW.12.2019.0295
  31. Klessig, D. F., Choi, H. W. and Dempsey, D. A. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Mol. Plant-Microbe Interact. 31:871-888. https://doi.org/10.1094/MPMI-03-18-0067-CR
  32. Langlois-Meurinne, M., Gachon, C. M. M. and Saindrenan, P. 2005. Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiol. 139:1890-1901. https://doi.org/10.1104/pp.105.067223
  33. Li, D., Liu, R., Singh, D., Yuan, X., Kachroo, P. and Raina, R. 2020. JMJ14 encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels. New Phytol. 225:2108-2121. https://doi.org/10.1111/nph.16270
  34. Lim, G.-H., Liu, H., Yu, K., Liu, R., Shine, M. B., Fernandez, J., Burch-Smith, T., Mobley, J. K., McLetchi, N., Kachroo, A. and Kachroo, P. 2020. The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Sci. Adv. 6:eaaz0478.
  35. Lim, G.-H., Shine, M. B., de Lorenzo, L., Yu, K., Cui, W., Navarre, D., Hunt, A. G., Lee, J.-Y., Kachroo, A. and Kachroo, P. 2016. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 19:541-549. https://doi.org/10.1016/j.chom.2016.03.006
  36. Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. and Cameron, R. K. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399-403. https://doi.org/10.1038/nature00962
  37. Mandal, M. K., Chanda, B., Xia, Y., Yu, K., Sekine, K.-T., Gao, Q.-M., Selote, D., Kachroo, A. and Kachroo, P. 2011. Glycerol-3-phosphate and systemic immunity. Plant Signal. Behav. 6:1871-1874. https://doi.org/10.4161/psb.6.11.17901
  38. Mishina, T. E. and Zeier, J. 2006. The Arabidopsis flavindependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol. 141:1666-1675.
  39. Mohnike, L., Rekhter, D., Huang, W., Feussner, K., Tian, H., Herrfurth, C., Zhang, Y. and Feussner, I. 2021. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell 33:735-749. https://doi.org/10.1093/plcell/koaa045
  40. Navarova, H., Bernsdorff, F., Doring, A.-C. and Zeier, J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123-5141. https://doi.org/10.1105/tpc.112.103564
  41. Nawrath, C. and Metraux, J.-P. 1999. Salicylic acid induction- deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393-1404. https://doi.org/10.2307/3870970
  42. Noutoshi, Y., Okazaki, M., Kida, T., Nishina, Y., Morishita, Y., Ogawa, T., Suzuki, H., Shibata, D., Jikumaru, Y., Hanada, A., Kamiya, Y. and Shirasu, K. 2012. Novel plant immunepriming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis. Plant Cell 24:3795-3804. https://doi.org/10.1105/tpc.112.098343
  43. Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821-1831. https://doi.org/10.1105/tpc.8.10.1821
  44. Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S. and Klessig, D. F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113-116. https://doi.org/10.1126/science.1147113
  45. Park, S.-W., Liu, P.-P., Forouhar, F., Vlot, A. C., Tong, L., Tietjen, K. and Klessig, D. F. 2009. Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. J. Biol. Chem. 284:7307-7317. https://doi.org/10.1074/jbc.M807968200
  46. Rekhter, D., Ludke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V., Wiermer, M., Zhang, Y. and Feussner, I. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365:498-502. https://doi.org/10.1126/science.aaw1720
  47. Rivas-San Vicente, M. and Plasencia, J. 2011. Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62:3321-3338. https://doi.org/10.1093/jxb/err031
  48. Schnake, A., Hartmann, M., Schreiber, S., Malik, J., Brahmann, L., Yildiz, I., von Dahlen, J., Rose, L. E., Schaffrath, U. and Zeier, J. 2020. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. J. Exp. Bot. 71:6444-6459. https://doi.org/10.1093/jxb/eraa317
  49. Shah, J., Chaturvedi, R., Chowdhury, Z., Venables, B. and Petros, R. A. 2014. Signaling by small metabolites in systemic acquired resistance. Plant J. 79:645-658. https://doi.org/10.1111/tpj.12464
  50. Shan, L. and He, P. 2018. Pipped at the post: pipecolic acid derivative identified as SAR regulator. Cell 173:286-287. https://doi.org/10.1016/j.cell.2018.03.045
  51. Sharma, S., Shinde, S. and Verslues, P. E. 2013. Functional characterization of an ornithine cyclodeaminase-like protein of Arabidopsis thaliana. BMC Plant Biol. 13:182.
  52. Shields, A., Shivnauth, V. and Castroverde, C. D. M. 2022. Salicylic acid and N-hydroxypipecolic acid at the fulcrum of the plant immunity-growth equilibrium. Front. Plant Sci. 13:841688.
  53. Shine, M. B., Gao, Q.-M, Chowda-Reddy, R. V., Singh, A. K., Kachroo, P. and Kachroo, A. 2019. Glycerol-3-phosphate me-diates rhizobia-induced systemic signaling in soybean. Nat. Commun. 10:5303.
  54. Shine, M. B., Zhang, K., Liu, H., Lim, G.-H., Xia, F., Yu, K., Hunt, A. G., Kachroo, A. and Kachroo, P. 2022. Phased small RNA-mediated systemic signaling in plants. Sci. Adv. 8:eabm8791.
  55. Song, J. T. 2005. Biochemical characterization of an Arabidopsis glucosyltransferase with high activity toward jasmonic acid. J. Plant Biol. 48:422-428. https://doi.org/10.1007/BF03030584
  56. Song, J. T. 2006. Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Mol. Cells 22:233-238. https://doi.org/10.1016/S1016-8478(23)17415-2
  57. Song, J. T., Lu, H., McDowell, J. M. and Greenberg, J. T. 2004. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J. 40:200-212. https://doi.org/10.1111/j.1365-313X.2004.02200.x
  58. Sun, T., Busta, L., Zhang, Q., Ding, P., Jetter, R. and Zhang, Y. 2018. TGACG-BINDING FACTOR 1 (TGA 1) and TGA 4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD 1) and CALMODULIN-BINDING PROTEIN 60g (CBP 60g). New Phytol. 217:344-354. https://doi.org/10.1111/nph.14780
  59. Sun, T., Zhang, Y., Li, Y., Zhang, Q., Ding, Y. and Zhang, Y. 2015. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nat. Commun. 6:10159.
  60. Torrens-Spence, M. P., Bobokalonova, A., Carballo, V., Glinkerman, C. M., Pluskal, T., Shen, A. and Weng, J.-K. 2019. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Mol. Plant 12:1577-1586. https://doi.org/10.1016/j.molp.2019.11.005
  61. Truman, W. and Glazebrook, J. 2012. Co-expression analysis identifies putative targets for CBP60g and SARD1 regulation. BMC Plant Biol. 12:216.
  62. Underwood, W. 2012. The plant cell wall: a dynamic barrier against pathogen invasion. Front. Plant Sci. 3:85.
  63. Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H. and Ryals, J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959-965. https://doi.org/10.1105/tpc.6.7.959
  64. Vlot, A. C., Dempsey, D. A. and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
  65. von Saint Paul, V., Zhang, W., Kanawati, B., Geist, B., FausKessler, T., Schmitt-Kopplin, P. and Schaffner, A. R. 2011. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell 23:4124-4145. https://doi.org/10.1105/tpc.111.088443
  66. Wang, C., El-Shetehy, M., Shine, M. B., Yu, K., Navarre, D., Wendehenne, D., Kachroo, A. and Kachroo, P. 2014. Free radicals mediate systemic acquired resistance. Cell Rep. 7:348-355. https://doi.org/10.1016/j.celrep.2014.03.032
  67. Wang, C., Liu, R., Lim, G.-H., de Lorenzo, L., Yu, K., Zhang, K., Hunt, A. G., Kachroo, A. and Kachroo, P. 2018. Pipecolic acid confers systemic immunity by regulating free radicals. Sci. Adv. 4:eaar4509.
  68. Wildermuth, M. C., Dewdney, J., Wu, G. and Ausubel, F. M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562-565. https://doi.org/10.1038/35107108
  69. Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., De Luca, V. and Despres, C. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1:639-647. https://doi.org/10.1016/j.celrep.2012.05.008
  70. Xia, Y., Gao, Q.-M., Yu, K., Lapchyk, L., Navarre, D., Hildebrand, D., Kachroo, A. and Kachroo, P. 2009. An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants. Cell Host Microbe 5:151-165. https://doi.org/10.1016/j.chom.2009.01.001
  71. Xia, Y., Yu, K., Navarre, D., Seebold, K., Kachroo, A. and Kachroo, P. 2010. The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiol. 154:833-846. https://doi.org/10.1104/pp.110.161646
  72. Yildiz, I., Mantz, M., Hartmann, M., Zeier, T., Kessel, J., Thurow, C., Gatz, C., Petzsch, P., Kohrer, K. and Zeier, J. 2021. The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. Plant Physiol. 186:1679-1705. https://doi.org/10.1093/plphys/kiab166
  73. Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J. S., Navarre, D., Kachroo, A. and Kachroo, P. 2013. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaicacid-induced systemic immunity. Cell Rep. 3:1266-1278. https://doi.org/10.1016/j.celrep.2013.03.030
  74. Zeier, J. 2013. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 36:2085-2103. https://doi.org/10.1111/pce.12122
  75. Zeier, J. 2021. Metabolic regulation of systemic acquired resistance. Curr. Opin. Plant Biol. 62:102050.
  76. Zhang, J. and Zhou, J.-M. 2010. Plant immunity triggered by microbial molecular signatures. Mol. Plant 3:783-793. https://doi.org/10.1093/mp/ssq035