DOI QR코드

DOI QR Code

Heavy-Metal Adsorption Characteristics of Scoria Distributed over the Earth Surface of Jeju Island

  • Soo-Hyoung, Moon (Jeju Special Self-Governing Province Development Corporation) ;
  • Ho-Won, Lee (Department of Chemical Engineering, Jeju National University) ;
  • Seung-Geon, Kim (Department of Chemical Engineering, Jeju National University)
  • 투고 : 2022.11.24
  • 심사 : 2022.12.28
  • 발행 : 2023.02.10

초록

In this study, we investigated the various adsorption factors influencing the adsorption of heavy metal ions based on the study of the composition and physicochemical properties of scoria dispersed throughout Jeju Island. Analysis of the distribution characteristics of scoria samples collected from five areas of Jeju showed that reddish-brown-colored scoria were predominant. Analysis of scoria collected from Jeju Island showed that its mineral components are ordered as follows: SiO2 > Al2O3 > Fe2O3 > CaO and MgO. The experimental data did not show a linear relationship in the pseudo-first-order adsorption kinetics. In contrast, a pseudo-second-order model yielded a positive linear relationship, and this model was subsequently used. It could be concluded based on an intraparticle diffusion model indicating linear relationships that the capture of metal ions on scoria is dominated by the primary adsorption step.

키워드

과제정보

This research was supported by the 2021 scientific promotion program funded by Jeju National University.

참고문헌

  1. J. H. Lee and S. H. Yun, Morphological analysis of quternary monogenetic volcanoes in Jeju island, Korea, J. Geol. Soc. Korea, 48, 383-400 (2012).
  2. C. H. Jeong and G. Y. Jeong, Effect of groundwater anions and pH on the sorption removal of heavy metals by bentonite, Econ. Environ. Geol., 33, 31-40 (2000).
  3. U. Wingenfelder, C. Hansen, G. Furrer, and R. Schulin, Removal of heavy metals from mine waters by natural zeolites, Environ. Sci. Technol., 39, 4606-4613 (2005). https://doi.org/10.1021/es048482s
  4. M. G. Fonseca, M. M. Oliveira, and L. N. H. Arikaki, Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral, J. Hazard. Mater., B137, 288-292 (2006). https://doi.org/10.1016/j.jhazmat.2006.02.001
  5. J. H. Potgieter, S. S. Potgieter-Vermaak, and P. D. Kalibantona, Heavy metals removal from solution by palygorskite clay, Miner. Eng., 19, 463-470 (2006). https://doi.org/10.1016/j.mineng.2005.07.004
  6. M. Yavuz, F. Gode, E. Pehlivan, S. Ozmert, and Y. C. Sharma, An economic removal of Cu2+ and Cr3+ on the new adsorbents: Pumice and polyacrylonitrile/pumice composite, Chem. Eng. J., 137, 453-461 (2008). https://doi.org/10.1016/j.cej.2007.04.030
  7. S. G. Kim, S. H. Moon, and H. W. Lee, Adsorption behavior of heavy metals and organics in the mixed packed column of socria/activated carbon, Appl. Chem. Eng., 32, 97-101 (2021). https://doi.org/10.14478/ACE.2021.1001
  8. J. S. Kwon, S. T. Yun, S. O. Kim, B. Mayer, and I. Hutcheon, Sorption of Zn(II) in aqueous solutions by scoria, Chemosphere, 60, 1416-1426 (2005). https://doi.org/10.1016/j.chemosphere.2005.01.078
  9. J. M. Morgan-Sagastume and A. Noyola, Evaluation of an aerobic submerged filter packed with volcanic scoria, Bioresour. Technol., 99, 2528-2536 (2008). https://doi.org/10.1016/j.biortech.2007.04.068
  10. E. Alemayehu and B. Lennartz, Virgin volcanic rocks : Kinetics and equilibrium studies for the adsorption of cadmium from water, J. Hazard. Mater., 169, 395-401 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.109
  11. S. H. Moon, H. W. Lee, J. H. Kim, K. K. Kang, and Y. S. Mok, Characteristics of volcanic cinders and their adsorption trait for heavy metal removal, Res. J. Chem. Environ., 15, 920-927 (2011).
  12. M. S. Choi, C. S. Cheong, and K. H. Park, An experimental study on the trace element analysis of rock samples with regard to the decomposition method, J. Petrol. Soc. Korea, 3, 41-48 (1994).
  13. T. Allen, Particle Size Measurement, 4th ed., Champman & Hall, NY, USA (1990).
  14. Y. S. Ho and G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34, 451-465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  15. O. Gercel, A. Ozcan, A. S. Ozcan, and H. F. Gercel, Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions, Appl. Surf. Sci., 253, 4843-4852 (2007). https://doi.org/10.1016/j.apsusc.2006.10.053
  16. F. C. Wu, R. I. Tseng, and R. S. Juang, Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan, Water Res., 35, 613-618 (2001). https://doi.org/10.1016/S0043-1354(00)00307-9
  17. W. J. Weber and J. C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 89, 31-60 (1963).
  18. P. S. Kumar, Removal of Congo red from aqueous solutions by neem saw dust carbon, Colloid J., 72, 703-709 (2010). https://doi.org/10.1134/S1061933X10050182
  19. T. S. Singh and K. K. Pant, Kinetics and mass transfer studies on the adsorption of arsenic onto activated alumina and iron oxide impregnated activated alumina, Water Qual. Res. J. Canada, 41, 147-156 (2006). https://doi.org/10.2166/wqrj.2006.017
  20. M. Toor and B. Jin, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye, Chem. Eng. J., 187, 79-88 (2012). https://doi.org/10.1016/j.cej.2012.01.089