DOI QR코드

DOI QR Code

Blood vessel remodeling in the cerebral cortex induced by binge alcohol intake in mice

  • Hiroshi, Hasegawa (Laboratory of Hygienic Sciences, Kobe Pharmaceutical University) ;
  • Toshiya, Tanaka (Laboratory of Hygienic Sciences, Kobe Pharmaceutical University) ;
  • Mari, Kondo (Laboratory of Hygienic Sciences, Kobe Pharmaceutical University) ;
  • Koji, Teramoto (Laboratory of Hygienic Sciences, Kobe Pharmaceutical University) ;
  • Kei, Nakayama (Laboratory of Hygienic Sciences, Kobe Pharmaceutical University) ;
  • Gi‑Wook, Hwang (Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University)
  • 투고 : 2022.09.29
  • 심사 : 2022.12.05
  • 발행 : 2023.01.15

초록

Ethanol is toxic to the brain and causes various neurological disorders. Although ethanol can directly exert toxicity on neurons, it also acts on other cell types in the central nervous system. Blood vessel endothelial cells interact with, and are affected by blood ethanol. However, the effects of ethanol on the vascular structures of the brain have not been well documented. In this study, we examined the effects of binge levels of ethanol on brain vasculature. Immunostaining analysis indicated structural alterations of blood vessels in the cerebral cortex, which became more tortuous than those in the control mice after ethanol administration. The interaction between the blood vessels and astrocytes decreased, especially in the upper layers of the cerebral cortex. Messenger RNA expression analysis revealed a unique downregulation of Vegfa mRNA encoding vascular endothelial growth factor (VEGF)-A among VEGF, angiopoietin, endothelin family angiogenic and blood vessel remodeling factors. The expression of three proteoglycan core proteins, glypican-5, neurocan, and serglycin, was also altered after ethanol administration. Thus, binge levels of ethanol affect the expression of VEGF-A and blood vessel-supporting proteoglycans, resulting in changes in the vascular structure of the cerebral cortex.

키워드

과제정보

We would like to thank Ms. Tomoko Okuno, Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, for her excellent technical assistance.

참고문헌

  1. Ch'Ng SS, Lawrence AJ (2018) Investigational drugs for alcohol use disorders: a review of preclinical data. Expert Opin Investig Drugs 27:459-474. https://doi.org/10.1080/13543784.2018.1472763 
  2. Moulder KL, Fu T, Melbostad H, Cormier RJ, Isenberg KE, Zorumski CF, Mennerick S (2002) Ethanol-induced death of postnatal hippocampal neurons. Neurobiol Dis 10:396-409. https://doi.org/10.1006/nbdi.2002.0523 
  3. Nowoslawski L, Klocke BJ, Roth KA (2005) Molecular regulation of acute ethanol-induced neuron apoptosis. J Neuropathol Exp Neurol 64:490-497. https://doi.org/10.1093/jnen/64.6.490 
  4. Narasimhan M, Mahimainathan L, Rathinam ML, Riar AK, Henderson GI (2011) Overexpression of Nrf2 protects cerebral cortical neurons from ethanol-induced apoptotic death. Mol Pharmacol 80:988-999. https://doi.org/10.1124/mol.111.073262 
  5. Dildy JE, Leslie SW (1989) Ethanol inhibits NMDA-induced increases in free intracellular Ca2+ in dissociated brain cells. Brain Res 499:383-387. https://doi.org/10.1016/0006-8993(89)90789-0 
  6. Hofman PL, Rabe CS, Moses F, Tabakoff B (1989) N-Methyl-D-Aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production. J Neurochem 52:1937-1940. https://doi.org/10.1111/j.1471-4159.1989.tb07280.x 
  7. Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721-1724. https://doi.org/10.1126/science.2467382 
  8. Henriques JF, Portugal CC, Canedo T, Relvas JB, Summavielle T, Socodato R (2018) Microglia and alcohol meet at the crossroads: microglia as critical modulators of alcohol neurotoxicity. Toxicol Lett 283:21-31. https://doi.org/10.1016/j.toxlet.2017.11.002 
  9. Kim H-B, Morris J, Miyashiro K, Lehto T, Lange u, Eberwine J, Sul J-Y (2021) Astrocytes promote ethanol-induced enhancement of intracellular Ca2+ signals through intercellular communication with neurons. iScience 24:102436. https://doi.org/10.1016/j.isci.2021.102436. 
  10. Husain K, Ansari RA, Ferder L (2014) Alcohol-induced hypertension: mechanism and prevention. World J Cardiol 6:245-252. https://doi.org/10.4330/wjc.v6.i5.245 
  11. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412. https://doi.org/10.1101/cshperspect.a020412 
  12. Haorah J, Knipe B, Leibhart J, Ghorpade A, Persidsky Y (2005) Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. J Leukoc Biol 78:1223-1232. https://doi.org/10.1189/jlb.0605340. 
  13. Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud P-O, Piontek J, Blasig IE, Dijkstra CD, Ronken E, de Vries HE (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666-3676. https://doi.org/10.1096/f.07-8329com 
  14. Yu H, Wang C, Wang X, Wang H, Zhang C, You J, Wang P, Feng C, Xu G, Zhao R, Wu X, Zhang G (2017) Long-term exposure to ethanol downregulates tight junction proteins through the protein kinase Cα signaling pathway in human cerebral microvascular endothelial cells. Exp Ther Med 14:4789-4796. https://doi.org/10.3892/etm.2017.5180 
  15. Morrow D, Cullen JP, Cahill PA, Redmond EM (2008) Ethanol stimulates endothelial cell angiogenic activity via a Notch- and angiopoietin-1-dependent pathway. Cardiovasc Res 79:313-321. https://doi.org/10.1093/cvr/cvn108 
  16. Radek KA, Kovacs EJ, Gallo RL, DiPietro LA (2008) Acute ethanol exposure disrupts VEGF receptor cell signaling in endothelial cells. Am J Physiol Heart Circ Physiol 295:H174-H184. https://doi.org/10.1152/ajpheart.00699.2007 
  17. Senger DR, Davis GE (2011) Angiogenesis. Cold Spring Harb Perspect Biol 8:a005090. https://doi.org/10.1101/cshperspect.a005090 
  18. Wang G, Lu P, Qiao P, Zhang P, Cai X, Tang L, Qian T, Wang H (2022) Blood vessel remodeling in late stage of vascular network reconstruction is essential for peripheral nerve regeneration. Bioeng Transl Med 7:e10361. https://doi.org/10.1002/btm2.10361 
  19. Pries AR, Reglin B, Secomb TW (2005) Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension 46:725-731. https://doi.org/10.1161/01.HYP.0000184428.16429.be 
  20. Pearson-Leary J, Eacret D, Chen R, Takano H, Nicholas B, Bhatnagar S (2017) Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress. Transl Psychiatry 7:e1160. https://doi.org/10.1038/tp.2017.122 
  21. Huggenberger R, Detmar M (2011) The cutaneous vascular system in chronic skin inflammation. J Investig Dermatol Symp Proc 15:24-32. https://doi.org/10.1038/jidsymp.2011.5 
  22. Nagy JA, Dvorak AM, Dvorak HF (2007) VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol 2:251-275. https://doi.org/10.1146/annurev.pathol.2.010506.134925 
  23. Licht T, Keshet E (2013) Delineating multiple functions of VEGF-A in the adult brain. Cell Mol Life Sci 70:1727-1737. https://doi.org/10.1007/s00018-013-1280-x 
  24. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11-55. https://doi.org/10.1016/j.matbio.2015.02.003 
  25. Colin-Pierre C, Berthelemy N, Belloy N, Danoux L, Bardey V, Rivet R, Mine S, Jeanmaire C, Maquart F-X, Ramont L, Brezillon S (2021) The glypican-1/HGF/c-met and glypican-1/VEGF/VEGFR2 ternary complexes regulate hair follicle angiogenesis. Front Cell Dev Biol 9:781172. https://doi.org/10.3389/fcell.2021.781172 
  26. Shimizu C, Oki Y, Mitani Y, Nakamura T, Nabeshima T (2015) Factors affecting ethanol-induced conditioned place preference and locomotor sensitization in mice. Biol Pharm Bull 38:1935-1945. https://doi.org/10.1248/bpb.b15-00626 
  27. Yunusoglu O (2022) Evaluation of the effects of quercetin on the rewarding property of ethanol in mice. Neurosci Lett 768:136383. https://orcid.org/0000-0003-1075-9574.  1075-9574
  28. Kondo M, Okazaki H, Nakayama K, Hohjoh H, Nakagawa K, Segi-Nishida E, Hasegawa H (2022) Characterization of astrocytes in the minocycline-administered mouse photothrombotic ischemic stroke model. Neurochem Res 47:2839-2855. https://doi.org/10.1007/s11064-022-03703-z 
  29. Razali N, Horikawa I, Hohjoh H, Yoshikawa C, Hasegawa H (2019) Prostaglandin-modulated interaction of thymic progenitor cells with blood vessels during estradiol-induced thymic involution. BPB Rep 2:39-47. https://doi.org/10.1248/bpbreports.2.4_39 
  30. Razali N, Hohjoh H, Inazumi T, Maharjan BD, Nakagawa K, Konishi M, Sugimoto Y, Hasegawa H (2020) Induced prostanoid synthesis regulates the balance between Th1- and Th2-producing inflammatory cytokines in the thymus of diet-restricted mice. Biol Pharm Bull 43:649-662. https://doi.org/10.1248/bpb.b19-00838 
  31. Tu Y, Kroener S, Abernathy K, Lapish C, Seamans J, Chandler LJ, Woodward JJ (2007) Ethanol inhibits persistent activity in prefrontal cortical neurons. J Neurosci 27:4765-4775. https://doi.org/10.1523/JNEUROSCI.5378-06.2007 
  32. Kubotera H, Ikeshima-Kataoka H, Hatashita Y, Mascaro ALA, Pavone FS, Inoue T (2019) Astrocytic endfeet re-cover blood vessels after removal by laser ablation. Sci Rep 9:1263. https://doi.org/10.1038/s41598-018-37419-4 
  33. Heithof BP, George KK, Phares AN, Zuidhoek IA, Munoz-Ballester C, Robel S (2020) Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia 69:436-472. https://doi.org/10.1002/glia.23908 
  34. Dao HH, Bouvet C, Moreau S, Beaucage P, Lariviere R, Servant MJ, de Champlain J, Moreau P (2006) Endothelin is a dose-dependent trophic factor and a mitogen in small arteries in vivo. Cardiovasc Res 71:61-68. https://doi.org/10.1016/j.cardiores.2006.02.029 
  35. Soeki T, Tamura Y, Shinohara H, Sakabe K, Onose Y, Fukuda N (2002) Serum hepatocyte growth factor predicts ventricular remodeling following myocardial infarction. Circ J 66:1003-1007. https://doi.org/10.1253/circj.66.1003 
  36. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11-55. https://doi.org/10.1016/j.matbio.2015.02.003 
  37. Wight TN (2018) A role for proteoglycans in vascular disease. Matrix Biol 71-72:396-420. https://doi.org/10.1016/j.matbio.2018.02.019 
  38. Batiuk MY, Martirosyan A, Wahis J, de Vin F, Marneffe C, Kusserow C, Koeppen J, Viana JF, Oliveira JF, Voet T, Ponting CP, Belgard TG, Holt MG (2020) Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun 11:1220. https://doi.org/10.1038/s41467-019-14198-8 
  39. Westergard T, Rothstein JD (2020) Astrocyte diversity: current insights and future directions. Neurochem Res 45:1298-1305. https://doi.org/10.1007/s11064-020-02959-7 
  40. Yang H, An J, Choi I, Lee K, Park S-M, Jou I, Joe E-H (2020) Region-specific astrogliosis: differential vessel formation contributes to different patterns of astrogliosis in the cortex and striatum. Mol Brain 13:103. https://doi.org/10.1186/s13041-020-00642-0 
  41. Villarreal A, Vogel T (2021) Different favors of astrocytes: revising the origins of astrocyte diversity and epigenetic signatures to understand heterogeneity after injury. Int J Mol Sci 22:6867. https://doi.org/10.3390/ijms22136867 
  42. Karaman S, Paavonsalo S, Heinolainen K, Lackman MH, Ranta A, Hemanthakumar KA, Kubota Y, Alitalo K (2022) Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance. J Exp Med 219:e20210565. https://doi.org/10.1084/jem.20210565 
  43. Kutcher ME, Klagsbrun M, Mamluk R (2004) VEGF is required for the maintenance of dorsal root ganglia blood vessels but not neurons during development. FASEB J 18:1952-1954. https://doi.org/10.1096/f.04-2320fje 
  44. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispeet ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691-703. https://doi.org/10.1016/j.cell.2007.06.054 
  45. Mackenzie F, Ruhrberg C (2012) Diverse roles for VEGF-A in the nervous system. Development 139:1371-1380. https://doi.org/10.1242/dev.072348 
  46. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454-2468. https://doi.org/10.1172/JCI60842 
  47. Lambie DG (1985) Alcoholic brain damage and neurological symptoms of alcohol withdrawal-manifestations of overhydration. Med Hypotheses 16:377-388. https://doi.org/10.1016/0306-9877(85)90058-1 
  48. Sripathirathan K, Brown J, Neafsey EJ, Collins MA (2009) Linking binge alcohol-induced neurodamage to brain edema and potential aquaporin-4 upregulation: evidence in rat organotypic brain slice cultures and in vivo. J Neurotrauma 26:261-273. https://doi.org/10.1089/neu.2008.0682 
  49. Zhang C, Zhang S, Zhang D, Zhang Z, Xu Y, Liu S (2011) A lung cancer gene GPC5 could also be crucial in breast cancer. Mol Genet Metab 103:104-105. https://doi.org/10.1016/j.ymgme.2011.02.005 
  50. Yu W, Inoue J, Imoto I, Matsuo Y, Karpas A, Inazawa J (2003) GPC5 is a possible target for the 13q31-q32 amplification detected in lymphoma cell lines. J Hum Genet 48:331-335. https://doi.org/10.1007/s10038-003-0026-2 
  51. Li F, Shi W, Capurro M, Filmus J (2011) Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling. J Cell Biol 192:691-704. https://doi.org/10.1083/jcb.201008087 
  52. Okamoto K, Honda K, Doi K, Ishizu T, Katagiri D, Wada T, Tomita K, Ohtake T, Kaneko T, Kobayashi S, Nangaku M, Tokunaga K, Noiri E (2015) Glypican-5 increases susceptibility to nephrotic damage in diabetic kidney. Am J Pathol 185:1889-1898. https://doi.org/10.1016/j.ajpath.2015.03.025. 
  53. Saunders S, Paine-Saunders S, Lander AD (1997) Expression of the cell surface proteoglycan glypican-5 is developmentally regulated in kidney, limb, and brain. Dev Biol 190:78-93. https://doi.org/10.1006/dbio.1997.8690 
  54. Chapouly C, Guimbal S, Hollier P-L, Renault M-A (2019) Role of hedgehog signaling in vasculature development, differentiation, and maintenance. Int J Mol Sci 20:3076. https://doi.org/10.3390/ijms20123076 
  55. Rauch U, Feng K, Zhou XH (2001) Neurocan: a brain chondroitin sulfate proteoglycan. Cell Mol Life Sci 58:1842-1856. https://doi.org/10.1007/PL00000822 
  56. McKeon RJ, Jurynec MJ, Buck CR (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19:10778-10788. https://doi.org/10.1523/JNEUROSCI.19-24-10778.1999 
  57. Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182:399-411. https://doi.org/10.1016/s0014-4886(03)00087-6 
  58. Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, Brook GA (2009) NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury. BMC Neurol 9:32. https://doi.org/10.1186/1471-2377-9-32 
  59. Zhang Y, Rauch U, Perez M-TR (2003) Accumulation of neurocan, a brain chondroitin sulfate proteoglycan, in association with the retinal vasculature in RCS rats. Invest Ophthalmol Vis Sci 44:1252-1261. https://doi.org/10.1167/iovs.02-0450 
  60. Imanaka-Yoshida K, Yoshida T, Miyagawa-Tomita S (2014) Tenascin-C in development and disease of blood vessels. Anat Rec (Hoboken) 297:1747-1757. https://doi.org/10.1002/ar.22985 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.