DOI QR코드

DOI QR Code

Changes in aroma compounds of decaffeinated coffee beans

디카페인 커피 원두의 향기성분 변화

  • Jin-Young Lee (Department of Food Science and Technology, Jeonbuk National University) ;
  • Young-Soo Kim (Department of Food Science and Technology, Jeonbuk National University)
  • Received : 2023.05.26
  • Accepted : 2023.06.19
  • Published : 2023.06.30

Abstract

In this study, we wanted to understand the impact of different decaffeination processes on aroma compounds of coffee. Therefore, we analyzed differences in physical characteristics and volatile aroma compounds profiles of regular coffee (RC), Swiss water process decaffeinated coffee (SWDC), and supercritical CO2 decaffeinated coffee (SCDC) after roasting the coffee beans. The electronic nose analysis identified RC and SCDC as different groups which indicates that these groups volatile aroma compound compositions were different. The principal component analysis of volatile compound patterns identified using an electronic nose indicated that there was a large difference in volatile compounds between RC, which was not decaffeinated, and both decaffeinated SWDC and SCDC. The major aroma compounds of RC, SWDC and SCDC were propan-2-one and hexan-2-one which are ketone, and hexanal and (E)-2-pentenal which are aldehyde and 3-methyl-1-butanol which is an alcohol. After roasting, the composition of major volatile compounds appearing in the beans was similar, but the relative odor intensity was different. We identified 28 volatile aroma compounds from RC, SWDC, and SCDC using headspace-solid phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS), and analyzed 10 major compounds that were present in high abundance, including furfural, 2-furanmethanol, 2,5-dimethylpyrazine, and 2-ethyl-3-methylpyrazine.

본 연구는 브라질산 커피생두를 디카페인 처리방법에 따라 구분하여 디카페인 무처리(RC), SWP 디카페인(SWDC), 초임계 CO2 디카페인(SCDC)에 대한 로스팅 이후 원두의 향기성분변화를 전자코와 HS-SPME-GC-MS를 이용해 분석하였다. 로스팅 후 Agtron(#)은 SWDC와 SCDC가 RC보다 더 낮은 유의적인 차이를 보였다(p<0.05). 전자코를 이용해 분석한 세 가지 시료의 주요 향기성분은 propanol-2-one, 3-methylbutanoic acid, 1-methyl-4-isopropenyl-1-cyclohexene으로 확인되었으며, 특히 propanol-2-one은 fruity, glue의 향에 관련한 것으로 디카페인 공정 유무와 상관없이 가장 높은 강도로 분석되었다. 한편, SCDC의 향기성분 중 propanol-2-one, methyl formate의 함량이 RC와 비하여 유의적으로 높게 나타났다(p<0.05). 전자코를 이용한 향기성분 패턴의 PCA 분석결과 디카페인 무처리구인 RC와 처리구인 SWDC 및 SCDC의 향기성분의 차이를 확인하였고, 이와 같은 영향은 SCDC에서 더 크게 분석되었다. RC, SWDC와 SCDC의 주요 향기성분들이 propan-2-one과 hexan-2-one은 ketone, hexanal과 (E)-2-pentenal은 aldehyde, 3-methyl-1-butanol, 4-methylhexan-1-ol, 2-octanol은 alcohol에 해당하였으며, 로스팅 후 원두에서 주로 나타나는 향기성분의 구성은 유사하였으나 상대적 강도에서 차별성이 확인되었다. HS-SPME-GC-MS를 사용한 RC, SWDC와 SCDC의 휘발성 향기성분은 모두 28종으로 확인되었으며, 세 가지 시료에서 공통으로 높은 함량을 보이는 상위 향기성분은 furfural, 2,5-dimethylpyrazine, 2-furanmethanol, 2-formyl-5-methylfuran, furfuryl acetate, 2-ethyl-3-methylpyrazine 등 총 10종으로 분석되었다. RC에서 분석된 휘발성 향기성분 20여 종은 SWDC와 SCDC에서는 낮은 함량을 보이며 디카페인 처리에 따른 영향으로 차별화되었다. 본 연구를 통해 디카페인 처리에 따른 로스팅 후 커피 원두의 향기성분 분석에 전자코와 HS-SPME-GC-MS를 이용함에 따라 향기성분의 조성 및 상대적 강도, 함량에 대한 패턴분석이 가능하였으며, 이와 같은 결과로 디카페인 커피에 대한 향미 특성 연구에 도움이 될 것이라 기대된다.

Keywords

References

  1. Baek YS, Ramya M, An HR, Park PM, Lee SY, Baek NI, Park PH. Volatiles profile of the floral organs of a new hybrid cymbidium, 'Sunny Bell' using headspace solid-phase microextraction gas chromatography-mass spectrometry analysis. Plants, 8, 251, (2019)
  2. Boo CG, Hong SJ, Shin EC. Comparative evaluation of the volatile profiles and taste properties of commercial coffee products using electronic nose, electronic tongue, and GC/MSD. J Korean Soc Food Sci Nutr, 50, 810-822 (2021)
  3. Boot WJ. Up to speed: The buzz on roasting decaf. Roast Magazine, Portland, USA, Sept-Oct, 1-7 (2005)
  4. Caporaso N, Whitworth MB, Cui C, Fisk ID. Variability of single bean coffee volatile compounds of arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res Int, 108, 628-640 (2018) https://doi.org/10.1016/j.foodres.2018.03.077
  5. Cotter AR, Hopfer H. The effects of storage temperature on the aroma of whole bean arabica coffee evaluated by coffee consumers and HS-SPME-GC-MS. Beverages, 4, 68 (2018)
  6. Giungato P, Laiola E, Nicolardi V. Evaluation of industrial roasting degree of coffee beans by using an electronic nose and a stepwise backward selection of predictors. Food Anal Method, 10, 3424-3433 (2017) https://doi.org/10.1007/s12161-017-0909-z
  7. Hong SD. World coffee industry production and consumption trends, world agriculture volume 198. Available from: https://library.krei.re.kr/pyxis-api/1/digital-files/605ba745-b5a3-2a94-e054-b09928988b3c. Accessed May. 10, 2023.
  8. ICO (International Coffee Organization). Trade statistics - May 2021. Available from: http://www.ico.org. Accessed May. 10, 2023.
  9. Jung JY, Rhee JK. Roasting and cryogenic grinding enhance the antioxidant property of sword beans (Canavalia gladiata). J Microbiol Biotechnol, 30, 1706-1719 (2020) https://doi.org/10.4014/jmb.2003.03069
  10. KCS (Korea Customs Service). Coffee (bean) import trends in 2022. Available from: https://www.customs.go.kr/streamdocs/view/sd;streamdocsId=72059269162294321. Accessed May. 10, 2023.
  11. Kim KH, Kim AH, Lee JK, Chun MS, No BS. Analysis of flavor pattern of various coffee beans using electronic nose. Korean J Food Sci Technol, 46, 1-6 (2014) https://doi.org/10.9721/KJFST.2014.46.1.1
  12. Lee JC. A study of flavor compounds and quality characteristics in espresso of coffee shop franchises. Culi Sci & Hos Res, 25, 67-75 (2019)
  13. Lee JW, Yoon HH. Physiochemical characteristics and acceptance of Colombia coffee according to different decaffeination processes and roasting conditions. Culi Sci & Hos Res, 24, 123-130 (2018)
  14. Lee SH. Discrimination between defective and non-defective brazilian coffee beans using electronic nose. MS Thesis, Gangneung-Wonju National University, Korea, p 15-17 (2019)
  15. Lim HB, Jang KI, Kim DH. Physicochemical characteristics and volatile compounds analysis of coffee brews according to coffee bean grinding grade. J Korean Soc Food Sci Nutr, 46, 730-738 (2017)
  16. Lim JK. Coffee Chemistry. Korean Studies Information, p 276-301 (2018)
  17. Moon SY, Kim MR. A study on fragrance characteristics of washed processed coffee and natural processed coffee using GC-IMS (gas chromatograph-ionmobility spectrometer) electronic nose. J Korean Soc Food Sci Nutr, 49, 829-835 (2020) https://doi.org/10.3746/jkfn.2020.49.8.829
  18. Pietsch A. Decaffeinationd Process and Quality. The Craft and Science of Coffee. Academic Press, Amsterdam, Nederlanden, p 225-243 (2017)
  19. Pua A, Lau H, Liu SQ, Tan LP, Goh RMV, Lassabliere B, Leong KC, Sun J, Cornuz M, Yu B. Improved detection of key odourants in Arabica coffee using gas chromatography-olfactometry in combination with low energy electron ionisation gas chromatography-quadrupole time-of-flight mass spectrometry. Food Chem, 302, 125370 (2020)
  20. Schaller E, Bosset JO, Escher F. 'Electronic noses' and their application to food. LWT-Food Sci Technol, 31, 305-316 (1998) https://doi.org/10.1006/fstl.1998.0376
  21. Seo HS, Kang HJ, Jeong EH, Hwang IK. Application of GC-SAW (surface acoustic wave) electronic nose to classification of origins and blended commercial brands in roasted ground coffee beans. Korean J Food Cookery Sci, 22, 299-307 (2006)
  22. Swiss Water Process Decaffeinated Coffee Inc. Swiss water process step by step. Available from: https://www.swisswater.com/pages/coffee-decaffeination-process#stepbystep. Accessed May. 10, 2023.
  23. Yoo DJ, Park EH. All New Coffee Inside. The Scholar Bean, Seoul, Korea, p 101-173 (2021)
  24. Zabot GL. Decaffeination using supercritical carbon dioxide. In: Green Sustainable Process for Chemical and Environmental Engineering and Science, Elsevier, Amsterdam, Nederlanden, p 255-278 (2020)