DOI QR코드

DOI QR Code

Immunomodulatory effects of six Acetobacter pasteurianus strains in RAW-Blue macrophage

  • Sun Hee Kim (Fermented and Processed Food Science Division, Department of Agrofood Resource, NIAS, RDA) ;
  • Woo Soo Jeong (Fermented and Processed Food Science Division, Department of Agrofood Resource, NIAS, RDA) ;
  • So-Young Kim (Fermented and Processed Food Science Division, Department of Agrofood Resource, NIAS, RDA) ;
  • Soo-Hwan Yeo (Fermented and Processed Food Science Division, Department of Agrofood Resource, NIAS, RDA)
  • 투고 : 2022.10.24
  • 심사 : 2022.12.02
  • 발행 : 2023.02.28

초록

In this study, we investigated the immunological properties of six strains of Acetobacter pasteurianus through nuclear factor-kappa B/activator protein-1 (NF-κB/AP-1) transcription factor activation and nitric oxide (NO) and cytokine production in macrophages. We found that the six A. pasteurianus strains had no significant inhibitory effect on the cell viability of RAW-BlueTM cells at the concentration of (25, 50, 100 CFU/macrophage). The production of NO and cytokines (TNF-α, IL-1β, and IL-6) showed different abilities of immune activation for each strain, and it was 0.7 to 0.9 times higher than that of the LPS (100 ng/mL, v/v) positive control and 7 to 8 times superior to that of the negative control group. To explore the underlying mechanism, we evaluated the mRNA expression of pro-inflammatory genes. Consequently, we found that inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression including genes expression of cytokines were elevated by the six A. pasteurianus treatment. These results suggested that the six strains of A. pasteurianus have an excellent industrial application value as a functional material for the purpose of enhancing immune function.

키워드

과제정보

The project was supported by the Research Program for Agricultural Science & Technology Development (Project No. PJ014161032022), the National Institute of Agricultural Sciences, Rural Development Administration, Korea.

참고문헌

  1. Amano S, Inagawa H, Nakata Y, Ohmori M, Kohchi C, Soma GI. Oral administration of lipopolysaccharide of acetic acid bacteria protects pollen allergy in a murine model. Anticancer Res, 35, 4509-4514 (2015)
  2. Anguluri K, China SL, Brugnoli M, Vero LD, Pulvirenti A, Cassanelli S, Gullo M. Candidate acetic acid bacteria strains for levan production. Polymers, 14, 2000 (2022)
  3. Aramsangtienchai P, Kongmon T, Pechroj S, Srisook K. Enhanced production and immunomodulatory activity of levan from the acetic acid bacterium, Tanticharoenia sakaeratensis. Int J Biol Macromol, 163, 574-581 (2020) https://doi.org/10.1016/j.ijbiomac.2020.07.001
  4. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol, 12, 141-179 (1994)
  5. Bao X, Wang Z, Fang J, Li X. Structural features of an immunostimulating and antioxidant acidic polysaccharide from the seeds of Cuscuta chinensis. Planta Med, 68, 237-243 (2002) https://doi.org/10.1055/s-2002-23133
  6. Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol, 6, 111-130 (2006) https://doi.org/10.1385/CT:6:2:111
  7. Caroff M, Karibian D. Structure of bacterial lipopolysaccharides. Carbohydr Res, 338, 2431- 2447 (2003) https://doi.org/10.1016/j.carres.2003.07.010
  8. Eltom S, Belvisi MG, Yew-Booth L, Dekkak B, Maher SA, Dubuis ED, Jones V, Fitzgerald KA, Birrell MA. TLR4 activation induces IL-1β release via an IPAF dependent but caspase 1/11/8 independent pathway in the lung. Resp Res, 15, 87 (2014)
  9. George F, John AT. In vitro cytotoxicity assays: Comparision of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett. 160, 171-177 (2006) https://doi.org/10.1016/j.toxlet.2005.07.001
  10. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: Evolutionarily conserve mediators of immune responses. Annu Rev Immunol, 16, 225-260 (1998) https://doi.org/10.1146/annurev.immunol.16.1.225
  11. Gil NY, Kim SH, Choi BY, Mun JY, Yeo SH, Kim SY. Immune enhancing effect by ethanol extract of Ailantias altissima. Korean J Food Nutr, 31, 940-948 (2018)
  12. Gomes A, Fernandes E, Lima JL. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods, 65, 45-80 (2005) https://doi.org/10.1016/j.jbbm.2005.10.003
  13. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell signal, 13, 85-94 (2001) https://doi.org/10.1016/S0898-6568(00)00149-2
  14. Haile LA, Puig M, Kelley-Baker L, Verthelyi D. Detection of innate immune response modulating impurities in therapeutic proteins. PLoS One, 10, e0125078 (2015)
  15. Hashimoto M, Ozono M, Furuyashiki M, Baba R, Hashiguchi S, Suda Y, Fukase K, Fujimoto Y. Characterization of a novel D-glycero-D-talooct-2-ulosonic acid-substituted lipid A moiety in the lipopolysaccharide produced by acetic acid bacterium Acetobacter pasteurianus NBRC 3283. J Biol Chem, 291, 21184-21194 (2016) https://doi.org/10.1074/jbc.M116.751271
  16. Inagawa H, Nishizawa T, Kochi C, Amano S, Soma GI. Pollen allergy suppression effect by the oral administration of acetic acid bacteria (Gluconacetobacter hansenii). Anticancer Res, 39, 4511-4516 (2019) https://doi.org/10.21873/anticanres.13627
  17. Jin YJ, Pyo YH. Effect of Monascus-fermented soybean extracts on antioxidant and skin aging-related enzymes inhibitory activities. Prev Nutr Food Sci, 22, 376-380 (2017) https://doi.org/10.3746/pnf.2017.22.4.376
  18. Kim DS, Hurh BS, Shin KS. Chemical characteristics and immuno-stimulatory activity of polysaccharides from fermented vinegars manufactured with different raw materials. J Korean Soc Food Sci Nutr, 44, 191-199 (2015) https://doi.org/10.3746/jkfn.2015.44.2.191
  19. Kim DS, Shin KS. Chemical property and macrophage stimulating activity of polysaccharides isolated from brown rice and persimmon vinegars. Korean J Food Nutr, 27, 1033-1042 (2014) https://doi.org/10.9799/ksfan.2014.27.6.1033
  20. Kim HS, Kang JS. Preparation and characteristics of bread by medicinal herb composites with immunostimulating activity. J Korean Soc Food Sci Nutr, 37, 109-116 (2008) https://doi.org/10.3746/jkfn.2008.37.1.109
  21. Kim SH, Kim JY, Gwon HM, Kim SY, Yeo SH. Determination of quality characteristics by the reproduction of grain vinegars reported in ancient literature. Korean J Food Preserv, 27, 859-871 (2020) https://doi.org/10.11002/kjfp.2020.27.7.859
  22. Kim SH, Kim JY, Jeong WS, Kim SY, Yeo SH. Culture and function-related characteristics of six acetic acid bacterial strains isolated from farm-made fermented vinegars. Korean J Food Preserv, 29, 142-156 (2022)
  23. Kim YH, Yoon HJ, Moon ME, Lee JH, Park HS, Kim JS. Production of NO, TNF-α, and IL-6 by squalene, alkoxy glycerol, batyl and chimyl solution in RAW 264.7 macrophage cells. J Korean Soc Food Sci Nutr, 34, 1503-1508 (2005) https://doi.org/10.3746/jkfn.2005.34.10.1503
  24. Koyama M, Ogasawara Y, Endou K, Akano H, Nakajima T, Aoyama T, Nakamura K. Fermentation induced changes in the concentrations of organic acids, amino acids, sugars, and minerals and superoxide dismutaselike activity in tomato vinegar. Int J Food Prop, 20, 888-898 (2017) https://doi.org/10.1080/10942912.2016.1188309
  25. Lee EH, Park HR, Shin MS, Cho SY, Choi HJ, Shin KS. Antitumor metastasis activity of pectic polysaccharide purified from the peels of Korean Citrus Hallabong. Carbohydr Polym, 111, 72-79 (2014) https://doi.org/10.1016/j.carbpol.2014.04.073
  26. Lepper PM, Triantafilou M, Schumann C, Schneider EM, Triantafilou K. Lipopolysaccharides from Helicobacter pylori can act as antagonists for Toll-like receptor 4. Cell Microbiol, 7, 519-528 (2005) https://doi.org/10.1111/j.1462-5822.2005.00482.x
  27. Lim DG. Oxidative stress: Reactive oxygen species and nitric oxide. Korean J Crit Care Med, 19, 81-85 (2004)
  28. Loppnow H, Libby P, Freudenberg M, Krauss JH, Weckesser J, Mayer H. Cytokine induction by lipopolysaccharide (LPS) corresponds to lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS. Infec Immun, 58, 3743-3750 (1990) https://doi.org/10.1128/iai.58.11.3743-3750.1990
  29. Lorenzo FD, Palmigiano A, Bitar-Nehme SA, Sturiale L, Duda KA, Gully D, Lanzetta R, Giraud E, Garozzo D, Bernardini ML, Molinaro A, Silipo A. The lipid A from Rhodopseudomonas palustris strain BisA53 LPS possesses a unique structure and low immunostimulant properties. Chem Eur J, 23, 3637-3647 (2017) https://doi.org/10.1002/chem.201604379
  30. Molinaro A, Holst O, Lorenzo FD, Callaghan M, Nurisso A, DErrico G, Zamyatina A, Peri F, Berisio R, Jerala R, Jimenez-Barbero J, Silipo A, Martin-Santamaria S. Chemistry of lipid A: At the heart of innate immunity. Chem Eur J, 21, 500-519 (2015) https://doi.org/10.1002/chem.201403923
  31. Mosmann T. Rapid colormetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods, 65, 55-63 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  32. Park YH, Choi JH, Whang K, Lee SO, Yang SA, Yu MH. Inhibitory effects of lyophilized dropwort vinegar powder on adipocyte differentiation and inflammation. J Life Sci, 24, 476-484 (2014) https://doi.org/10.5352/JLS.2014.24.5.476
  33. Paulson JC. Glycoproteins: What are the sugar chains for? Trends Biochem Sci, 14, 272-276 (1989) https://doi.org/10.1016/0968-0004(89)90062-5
  34. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem, 71, 635-700 (2002) https://doi.org/10.1146/annurev.biochem.71.110601.135414
  35. Sahu RK, Roy A, Matlam M, Deshmukh VK, Dwivedi J, Jha K. Review on skin aging and compilation of scientific validated medicinal plants, prominence to flourish a better research reconnoiters in herbal cosmetic. J Med Plant, 7, 1-22 (2013) https://doi.org/10.3923/rjmp.2013.1.22
  36. Saitoh S, Akashi S, Yamada T, Tanimura N, Kosugi A, Konno K, Matsumoto F, Fukase K, Kusumoto S, Nagai Y, Kusumoto Y, Kosugi A, Miyake K. Lipid A antagonist, lipid IVa, is distict from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligo- merization. Int Immunol, 16, 961-969 (2004) https://doi.org/10.1093/intimm/dxh097
  37. Shin KS, Kiyohara H, Matsumoto T, Yamada H. Rhamnogalacturonan II from the leaves of Panax ginseng C. A. Meyer as a macrophage Fc receptor expression-enhancing polysaccharide. Carbohydr Res, 300, 239-249 (1997) https://doi.org/10.1016/S0008-6215(97)00055-4
  38. Visner GA, Dougall W, Wilson J, Burr I, Nick H. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J Biol Chem, 265, 2856-2864 (1990) https://doi.org/10.1016/S0021-9258(19)39880-1
  39. Zhou HY, Shin EM, Guo LY, Youn UJ, Bae K, Kang SS, Zou LB, Kim YS. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappa B, JNK and p38 MAPK inactivation. Eur J Pharmacol, 586, 340-349 (2008) https://doi.org/10.1016/j.ejphar.2008.02.044
  40. Zhu H, Zhang Y, Zhang J, Chen D. Isolation and characterization of an anti-complementary proteinbound polysaccharide from the stem barks of Eucommia ulmoides. Int Immunopharmacol, 8, 1222-1230 (2008) https://doi.org/10.1016/j.intimp.2008.04.012