DOI QR코드

DOI QR Code

Kiwi-persimmon wine produced using wild Saccharomyces cerevisiae strains with sugar, acid, and alcohol tolerance

  • Hee Yul Lee (Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ;
  • Kye Man Cho (Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ;
  • Ok Soo Joo (Department of Food Science, Gyeongsang National University)
  • 투고 : 2023.01.12
  • 심사 : 2023.02.06
  • 발행 : 2023.02.28

초록

100 different yeast colonies were isolated from spontaneously fermented kiwis, persimmons, apples, pears, watermelons, grapes, grape fruits, peachs, and plums, and selected yeast strains were used to produce kiwi-persimmon mixed wine (KPMW). Among the isolates, five representative strains exhibited tolerance to sucrose, alcohol, pH, and potassium metabisulfite when compared with the control yeast strain (Saccharomyces cerevisiae KCCM 12615). All five yeast strains (Y4, Y10, Y28, Y78, and Y81) exhibited 99% 26S rDNA sequence similarity to S. cerevisiae. The pH, acidity, Brix, reducing sugar, alcohol, and organic acid contents were consistent in KPMW prepared from the S. cerevisiae KCCM 12615 and Y28 strains. KPMW made from the Y4, Y10, and Y28 strains exhibited lower quantities of free sugars than those of the KPMW made from the other yeast strains. The level of ethyl esters in KPMW prepared from the Y28 was higher than that in the other KPMWs. All strains, except for Y28, produced lower concentrations of sulfur and ketone compounds. Furthermore, the KPMW produced by the Y28 strains had total phenolic contents with 1.1 g/L, with DPPH and ABTS radical scavenging activities of 57.06% and 55.62%, respectively, and a FRAP assay value of 0.72. Our results suggest that Y28 is a promising yeast strain for producing high-quality wines.

키워드

과제정보

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2021R1A6A3A01087286) and the Basic Science Research Program (grant number 2016R1D1A1B01009898) through the NRF funded by the Ministry of Education, Science and Technology, Korea.

참고문헌

  1. Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio JC. Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol, 110, 34-42 (2006) https://doi.org/10.1016/j.ijfoodmicro.2006.02.002
  2. Caliari V, Panceri CP, Rosier JP, Bordignon-Luiz MT. Effect of the traditional, charmat, and asti method production on the volatile composition of moscato giallo sparkling wines. LWT-Food Sci Technol, 61, 393-400 (2015) https://doi.org/10.1016/j.lwt.2014.11.039
  3. Caridi A, Crucitti P, Ramondino D. Winemaking of must at high osmotic strength by thermotolerant yeast. Biotechnol Lett, 21, 617-620 (1999) https://doi.org/10.1023/A:1005528613379
  4. Cho E, Seddon JM, Rosner B, Willett WC, Hankinson SE. Prospective study of intake of fruits, vegetables, vitamins, and carotenoids and risk of age-related maculopathy. Arch Ophthalmol, 122, 883-892 (2004) https://doi.org/10.1001/archopht.122.6.883
  5. Cho KM, Jeong SH, Lee HY, Hwang CE, Ahn MJ, Shin JH, Lee JY, Jo HK, Seo WT. Physicochemical properties and volatile flavor compounds of kiwifruit wine according to production year. J Agric Life Sci, 51, 141-153 (2017) https://doi.org/10.14397/jals.2017.51.2.141
  6. Cho KM, Joo OS. Quality and antioxidant characteristics of Elaeagnus multiflora wine through the thermal processing of juice. Korean J Food Preserv, 21, 206-221 (2014) https://doi.org/10.11002/kjfp.2014.21.2.206
  7. Duarte WF, Dias DR, Oliveira JM, Teixeira JA, Silva JBDAE, Schwan RF. Characterization of different fruit wines made from cacao, capuassu, gabiroba, jaboticaba and umbu. LWT-Food Sci Technol, 43, 1564-1572 (2010) https://doi.org/10.1016/j.lwt.2010.03.010
  8. Haque MA, Seo WT, Hwang CE, Lee HY, Ahn MJ, Cho KM. Culture-independent analysis of yeast diversity in Korean traditional fermented soybean foods (doenjang and kanjang) based on 26S rRNA sequence. J Korean Soc Appl Biol Chem, 58, 377-385 (2015) https://doi.org/10.1007/s13765-015-0030-1
  9. Hong YA, Park HD. Role of non-Saccharomyces yeasts in Korean wines produced from Campbell Early grapes: Potential use of Hanseniaspora uvarum as a starter culture. Food Microbiol, 34, 207-214 (2013) https://doi.org/10.1016/j.fm.2012.12.011
  10. Hwang CE, Haque MA, Lee JH, Song YH, Lee HY, Kim SC, Cho KM. Bioconversion of γ-aminobutyric acid and isoflavone contents during the fermentation of high-protein soy powder yogurt with Lactobacillus brevis. Appl Biol Chem, 61, 409-421 (2018)
  11. Joo OS, Kang ST, Jeong CH, Lim JW, Park YG, Cho KM. Manufacturing of the enhances antioxidative wine using a ripe daebong persimmon (Dispyros kaki L.). J Appl Biol Chem, 54, 126-134 (2011) https://doi.org/10.3839/jabc.2011.022
  12. Katalinic V, Milos M, Modun D, Music I, Boban M. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem, 86, 593-600 (2004) https://doi.org/10.1016/j.foodchem.2003.10.007
  13. Kim MS, Hong YA, Yeo SH, Baek SY, Yun HJ, Rhee CH, Kim KP, Park HD. Environmental resistance of indigenous Saccharomyces cerevisiae with tolerance to potassium metabisulfite at the microbial succession stage of fermenting campbell early grape. Korean J Food Preserv, 20, 886-893 (2013) https://doi.org/10.11002/kjfp.2013.20.6.886
  14. Lee JH, Lee YB, Seo WD, Kang ST, Lim JW, Cho KM. Comparative studies of antioxidant activities and nutritional constituents of persimmon juice (Diospyros kaki L. cv. Gapjubaekmok). Prev Nutr Food Sci, 17, 141-151 (2012)
  15. Lin X, Hu X, Wu W, Liu S, Li C. Evaluation of the volatile profile of wax apple (Syzygium samarangense) wines fermented with different commercial Saccharomyces cerevisiae strains. Food Sci Biotechnol, 28, 657-667 (2019) https://doi.org/10.1007/s10068-018-0511-1
  16. Mestres M, Busto O, Guasch J. Analysis of organic sulphur compounds in wine aroma. J Chromatogr A, 881, 569-581 (2000) https://doi.org/10.1016/S0021-9673(00)00220-X
  17. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 31, 426-428 (1959) https://doi.org/10.1021/ac60147a030
  18. Mostert TT, Divol B. Investigating the proteins released by yeasts in synthetic wine fermentations. Int J Food Microbiol, 171, 108-118 (2014) https://doi.org/10.1016/j.ijfoodmicro.2013.11.010
  19. Pereira V, Cacho JC, Marques J. Volatile profile of Madeira wines submitted to traditional accelerated ageing. Food Chem, 162, 122-134 (2014) https://doi.org/10.1016/j.foodchem.2014.04.039
  20. Perestrelo R, Fernandes A, Albuquerque F, Marques J, Camara J. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal Chem Acta, 563, 154-164 (2006) https://doi.org/10.1016/j.aca.2005.10.023
  21. Sanchez-Palomo E, Gomez Garcia-Carpintero E, Alonso-Villegas R, Gonzalez-Vinas MA. Characterization of aroma compounds of Verdejo white wines from the La Mancha region by odour activity values. Flavour Fragr J, 25, 456-462 (2010) https://doi.org/10.1002/ffj.2005
  22. Satpal D, Kaur J, Bhadriya V, Sharma K. Actinidia deliciosa (Kiwi fruit): A comprehensive review on the nutritional composition, health benefits, traditional utilization, and commercialization. J Food Process Preserve, 45, e15588 (2021)
  23. Siren H, Siren K, Siren J. Evaluation of organic and inorganic compounds levels of red wines processed from Pinot Noir grapes. Anal Chem Res, 3, 26-36 (2015)
  24. Song NE, Lee JY, Lee YY, Park JD, Jang HW. Comparison of headspace-SPME and SPME-Arrow-GC-MS methods for the determination of volatile compounds in Korean salt-fermented fish sauce. Appl Biol Chem, 62, 16-23 (2019) https://doi.org/10.1186/s13765-019-0424-6
  25. Sun SY, Gong HS, Jiang XM, Zhao YP. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behavior and wine aroma of cherry wines. Food Microbiol, 44, 15-23 (2014) https://doi.org/10.1016/j.fm.2014.05.007
  26. Suzzi G, Arfelli G, Schirone M, Corsetti A, Perpetuini G, Tofalo R. Effect of grape indigenous Saccharomyces cerevisiae strains on Montepulciano d'Abruzzo red wine quality. Food Res Int, 46, 22-29 (2012) https://doi.org/10.1016/j.foodres.2011.10.046
  27. Torrens J, Urpi P, Riu-Aumatell M, Vichi S, Lopez-Tamames E, Buxaderas S. Different commercial yeast strains affecting the volatile and sensory profile of cava base wine. Int J Food Microbiol, 124, 48-57 (2008) https://doi.org/10.1016/j.ijfoodmicro.2008.02.023
  28. Ugliano M, Henschke PA. Comparison of three methods for accurate quantification of hydrogen sulfide during fermentation. Anal Chem Acta, 660, 87-91 (2010) https://doi.org/10.1016/j.aca.2009.09.049
  29. Wirth J, Caille S, Souquet JM, Samson A, Dieval JB, Vidal S, Fulcrand H, Cheynier V. Impact of post-bottling oxygen exposure on the sensory characteristics and phenolic composition of Grenache rose wines. Food Chem, 132, 1861-1871 (2012) https://doi.org/10.1016/j.foodchem.2011.12.019
  30. Yan S, Dong D. Main parameters and the dynamics of volatile compounds during the fermentation of Chinese Mao-tofu from Huangshan region. Food Sci Biotechnol, 28, 1315-1325 (2019) https://doi.org/10.1007/s10068-019-00581-0
  31. Zuzuarregui A, del Olmo M. Expression of stress genes in wine strains with different fermentative behavior. FEMS Yeast Res, 4, 699-710 (2004) https://doi.org/10.1016/j.femsyr.2004.01.008