DOI QR코드

DOI QR Code

Detection of Alternaria alternata Associated with Discolored Black Oat Seeds in Korea

귀리 종자흑변병에 관여하는 Alternaria alternata 검출 및 발생원인

  • Ji-Min Choi (Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Ji-Hye Song (Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Joonseob Ahn (Gangjin Agricultural Technology and Extension Center) ;
  • Dea-Wook Kim (Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kwang-Yeol Yang (Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University)
  • 최지민 (전남대학교 농업생명과학대학 응용생물학과) ;
  • 송지혜 (전남대학교 농업생명과학대학 응용생물학과) ;
  • 안준섭 (전라남도 강진군 농업기술센터) ;
  • 김대욱 (국립식량과학원 작물재배생리과) ;
  • 양광열 (전남대학교 농업생명과학대학 응용생물학과)
  • Received : 2023.11.20
  • Accepted : 2023.12.04
  • Published : 2023.12.31

Abstract

In 2023, a number of seeds suspected to be discolored black oat seeds on oat farms in Gangjin were observed and examined for fungal infection. The species Alternaria alternata was predominant, accounting for 84% of all fungal infections. The appearance and quality of seeds harvested in 2022 were compared with seeds harvested in 2023 from the same field. The lightness value was lower in the seeds harvested in 2023, while the electrical conductivity was higher in the seeds harvested in 2023. The content of avenanthramide was found to be 10 times higher in the 2023 seeds than in those harvested in 2022. The accumulated precipitation in Gangjin in May 2023 was 230 times higher than that in May 2022, and the average relative humidity was high. These conditions created an environment suitable for infection of A. alternata, which were thought to have caused discolored black oat seeds.

2023년에 강진 귀리 재배농가에서 종자흑변병이 의심되는 종자가 다수 관찰되었다. 흑변 증상을 보이는 귀리종자 132개를 선발하여 곰팡이 감염률을 조사한 결과, Alternaria속이 84%를 차지할 만큼 우점으로 검출되었고 Alternaria alternata로 동정되었다. 강진 재배농가의 같은 포장에서 2022년에 수확한 종자와 외관 및 품질을 비교한 결과, 명도를 나타내는 L값이 2023년의 귀리 종자에서 유의하게 낮게 나타났으며 종자 품질을 평가하는 전기전도도는 2023년 종자에서 유의적으로 높게 측정되어 종자의 활력에 차이가 있었다. 귀리 파이토알렉신으로 알려진 아베난쓰라마이드 함량은 2023년 종자에서 2022년에 비해 10배 정도 높게 분석되었다. 출수 후 수확하기 전 생식생장 기간에 해당하는 2023년 5월 강진의 한 달 평균 강수량은 2022년 5월에 비해 230배 많았고 평균 상대습도도 높아 A. alternata의 감염에 적합한 환경이 조성되어 종자흑변병이 발생하였을 것으로 생각되었다. 기후변화로 대발생할 수 귀리 병에 대한 모니터링과 함께 적극적인 방제 노력이 필요하리라 생각한다.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development(Project No. RS-2020-RD008569)" Rural Development Administration, Republic of Korea.

References

  1. Ben Mariem, S., Soba, D., Zhou, B., Loladze, I., Morales, F. and Aranjuelo, I. 2021. Climate change, crop yields, and grain quality of C3 cereals: a meta-analysis of [CO2], temperature, and drought effects. Plants 10: 1052.
  2. Berbee, M. L., Pirseyedi, M. and Hubbard, S. 1999. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91: 964-977. https://doi.org/10.1080/00275514.1999.12061106
  3. Brindzova, L., Certik, M., Rapta, P., Zalibera, M., Mikulajova, A. and Takacsova, M. 2008. Antioxidant activity, β-glucan and lipid contents of oat varieties. Czech J. Food Sci. 26: 163-173. https://doi.org/10.17221/2564-CJFS
  4. Chen, H., Li, C. J. and White, J. F. 2020. First report of Alternaria alternata causing leaf spot on oat (Avena sativa) in China. Plant Dis. 104: 1544.
  5. Choi, J.-H., Kim, J., Ham, H., Lee, T., Nah, J.-Y., Choi, H.-W. et al. 2018. Characterization of Pyrenophora avenae isolated from discolored black oat seeds in Korea. Korean J. Mycol. 46: 459-466. (In Korean)
  6. Emmons, C. L. and Peterson, D. M. 2001. Antioxidant activity and phenolic content of oat as affected by cultivar and location. Crop Sci. 41: 1676-1681. https://doi.org/10.2135/cropsci2001.1676
  7. Escriva, L., Oueslati, S., Font, G. and Manyes, L. 2017. Alternaria mycotoxins in food and feed: an overview. J. Food Qual. 2017: 1569748.
  8. Hall, R. D. and Wiesner, L. E. 1990. Relationship between seed vigor tests and field performance of 'Regar' meadow bromegrass. Crop Sci. 30: 967-970. https://doi.org/10.2135/cropsci1990.0011183X003000050001x
  9. Hampton, J. G., Johnstone, K. A. and Eua-Umpon, V. 1992. Bulk conductivity test variables for mungbean, soybean and French bean seed lots. Seed Sci. Technol. 20: 677-686.
  10. Jeong, M.-H., Choi, E. D. and Park, S.-Y. 2023a. First report of brown leaf spot caused by Epicoccum tobaicum on oat (Avena sativa) in Korea. Plant Dis. 107: 2255.
  11. Jeong, M.-H., Choi, E. D. and Park, S.-Y. 2023b. First report of sharp eyespot of oat (Avena sativa) caused by Ceratobasidium cereale in Korea. Plant Dis. 107: 2525.
  12. Juroszek, P., Racca, P., Link, S., Farhumand, J. and Kleinhenz, B. 2020. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathol. 69: 179-193. https://doi.org/10.1111/ppa.13119
  13. Kang, W. S., Seo, M.-C., Hong, S. J., Lee, K. J. and Lee, Y. H. 2019. Outbreak of rice panicle blast in Southern provinces of Korea in 2014. Res. Plant Dis. 25: 196-204. (In Korean) https://doi.org/10.5423/RPD.2019.25.4.196
  14. Kim, Y. C. 2021. First report of leaf spots on oat caused by Alternaria alternata in South Korea. Plant Dis. 105: 1200.
  15. Lee, Y. Y, Ham, H., Park, H.-H., Kim, Y.-K., Lee, M.-J., Han, O.-K. et al. 2016. The physicochemical properties and dietary fiber contents in naked and hulled Korean oat cultivars. Korean. J. Breed. Sci. 48: 37-47. (In Korean) https://doi.org/10.9787/KJBS.2016.48.1.037
  16. Malunga, L. N., Ames, N., Fetch, J. M., Netticadan, T. and Thandapilly, S. J. 2022. Genotypic and environmental variations in phenolic acid and avenanthramide content of Canadian oat (Avena sativa). Food Chem. 388: 132904.
  17. Mayama, S., Matsuura, Y., Iida, H. and Tani, T. 1982. The role of avenalumin in the resistance of oat to crown rust, Puccinia coronata f. sp. avenae. Physiol. Plant Pathol. 20: 189-199. https://doi.org/10.1016/0048-4059(82)90084-4
  18. Meydani, M. 2009. Potential health benefits of avenanthramides of oats. Nutr. Rev. 67: 731-735. https://doi.org/10.1111/j.1753-4887.2009.00256.x
  19. Praveen, B., Prasanna Kumar, M. K., Devanna, P., Palanna, K. B., Buella, P. P., Ramesh, G. V. et al. 2021. First report of Alternaria alternata causing leaf spot on oat (Avena sativa) in India. Plant Dis. 105: 3301.
  20. Ramasamy, V. S., Samidurai, M., Park, H. J., Wang, M., Park, R. Y., Yu, S. Y. et al. 2020. Avenanthramide-C restores impaired plasticity and cognition in Alzheimer's disease model mice. Mol. Neurobiol. 57: 315-330. https://doi.org/10.1007/s12035-019-01707-5
  21. Raza, A., Afnan, M., Ali, A., Naqvi, S. A. H., Sherwani, H. U. K., Nouman, M. et al. 2018. Occurrence of leaf spot of oat caused by Alternaria alternata in Multan, Punjab, Pakistan. Plant Prot. 2: 83-86. https://doi.org/10.33804/pp.002.03.3138
  22. Reis, R., de Goes, A., Mondal, S. N., Shilts, T., Brentu, F. C. and Timmer, L. W. 2006. Effect of lesion age, humidity, and fungicide application on sporulation of Alternaria alternata, the cause of brown spot of tangerine. Plant Dis. 90: 1051-1054. https://doi.org/10.1094/PD-90-1051
  23. Sang, S. and Chu, Y. 2017. Whole grain oats, more than just a fiber: role of unique phytochemicals. Mol. Nutr. Food Res. 61: 1600715.
  24. Son, Y. R., Lee, J. H., Park, H.-H., Lee, B. W., Kim, H.-J., Han, S.-I. et al. 2018. Changes in functional compounds and antioxidant activities in storage duration with accelerated age-conditioning of oats. Korean J. Crop Sci. 63: 149-157. (In Korean)
  25. The Korean Society of Plant Pathology. 2022. List of Plant Diseases in Korea. 6th ed. The Korean Society of Plant Pathology, Seoul, Korea. pp. 69-70. (In Korean)
  26. Timmer, L. W., Peever, T. L., Solel, Z. and Akimitsu, K. 2003. Alternaria diseases of citrus: novel pathosystems. Phytopathol. Mediterr. 42: 99-112.
  27. Upadhyay, P. and Singh, S. P. 2019. Detection methods for seed borne pathogens. Int. J. Curr. Microbiol. Appl. Sci. 8: 318-323. https://doi.org/10.20546/ijcmas.2019.803.039
  28. Vilmane, L., Zute, S., Straumite, E. and Galoburda, R. 2015. Protein, amino acid and gluten content in oat (Avena sativa L.) grown in Latvia. Proc. Latvian Acad. Sci. Section B 69: 170-177.
  29. Wise, M. L. 2011. Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa). J. Agric. Food Chem. 59: 7028-7038. https://doi.org/10.1021/jf2008869
  30. Woudenberg, J. H. C., Groenewald, J. Z., Binder, M. and Crous, P. W. 2013. Alternaria redefined. Stud. Mycol. 75: 171-212. https://doi.org/10.3114/sim0015