DOI QR코드

DOI QR Code

Biological Control of White Rot in Apple Using Bacillus spp.

Bacillus spp.를 이용한 사과 겹무늬썩음병의 생물학적 방제

  • Ha-Kyoung Lee (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Jong-Hwan Shin (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Seong-Chan Lee (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • You-Kyoung Han (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 이하경 (국립원예특작과학원 원예특작환경과) ;
  • 신종환 (국립원예특작과학원 원예특작환경과) ;
  • 이성찬 (국립원예특작과학원 원예특작환경과) ;
  • 한유경 (국립원예특작과학원 원예특작환경과)
  • Received : 2023.11.23
  • Accepted : 2023.12.06
  • Published : 2023.12.31

Abstract

Apple white rot, caused by Botryosphaeria dothidea, is one of the important diseases in Korea. B. dothidea can cause pre- and postharvest decay on apple fruit as well as canker and dieback of apple trees. In this study, we isolated bacteria from the trunk of apple trees and tested their antagonistic activity against B. dothidea. Five bacterial isolates (23-168, 23-169, 23-170, 23-172, and 23-173) were selected that were most effective at inhibiting the mycelial growth of the pathogens. The isolate 23-172 was identified as Bacillus amyloliquefaciens and four isolates 23-168, 23-169, 23-170, and 23-173 were identified as Bacillus velezensis by RNA polymerase beta subunit (rpoB) and DNA gyraseA subunit (gyrA) gene sequencing. All isolates showed strong antagonistic activity against B. dothidiea as well as Colletotrichum fructicola and Diaporthe eres. All isolates exhibited cellulolytic, proteolytic and phosphate solubilizing activities. In particular, two isolates 23-168, 23-169 were shown to significantly reduce the size of white rot lesions in pretreated apple fruits. These results will provide the basis for the development of a fungicide alternative for the control of white rot of apple.

본 연구에서는 사과 겹무늬썩음병을 유발하는 Botryosphaeria dothidea를 억제하는 길항미생물을 선발하였고, 선발한 길항미생물의 항균 활성과 길항 효소 생성 여부를 확인하였다. 선발된 길항미생물 중 4종은 Bacillus velezensis로 동정되었고, 1종은 B. amyloliquefaciens로 동정되었으며 이 길항미생물은 모두 겹무늬썩음병균에 강한 항균 활성을 가지고 있었다. 또한 선발된 5종의 길항미생물은 탄저병균인 Colletotrichum fructicola, 줄기마름병인 Diaporthe eres도 효과적으로 균사생장을 억제하였다. 선발된 길항미생물을 대상으로 cellulase, protease, phosphate solubilization 효소 활성을 분석한 결과 모두 효소를 분비하여 병원균의 생장을 억제 및 사멸시키고 식물 생장촉진 활성을 가지는 것으로 확인되었다. 사과 과실에서 겹무늬썩음병균과 선발된 길항미생물을 동시 접종하여 발병 억제 효과를 검정한 결과 B. velezensis 23-168 균주가 가장 효과적으로 발병을 억제하였다. 따라서 선발된 5종의 길항미생물은 사과 진균 방제를 위한 기초자료로 사용할 수 있을 것으로 생각된다.

Keywords

Acknowledgement

This work was carried out with the support of "Development of efficient detection and diagnosis technique for apple and peach latent pathogens in response to climate changes (Project No. RS-2020-RD009293)" Rural Development Administration, Republic of Korea.

References

  1. Alves, A., Crous, P. W., Correia, A. and Phillips, A. J. L. 2008. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers. 28: 1-13.
  2. Bhaskar, N., Sudeepa, E. S., Rashmi, H. N. and Selvi, A. T. 2007. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour. Technol. 98: 2758-2764. https://doi.org/10.1016/j.biortech.2006.09.033
  3. Carbone, I. and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556. https://doi.org/10.1080/00275514.1999.12061051
  4. Cheon, W. and Jeon, Y. 2015. Survey of major diseases occurred on apple in northern Gyeongbuk from 2013 to 2014. Res. Plant Dis. 21: 261-267. (In Korean) https://doi.org/10.5423/RPD.2015.21.4.261
  5. Chowdhury, S. P., Hartmann, A., Gao, X. and Borriss, R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42: a review. Front. Microbiol. 6: 780.
  6. Chun, J. and Bae, K. S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek 78: 123-127. https://doi.org/10.1023/A:1026555830014
  7. Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  8. Dimkic, I., Janakiev, T., Petrovic, M., Degrassi, G. and Fira, D. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms: a review. Physiol. Mol. Plant Pathol. 117: 101754.
  9. Dunlap, C. A., Kim, S.-J., Kwon, S.-W. and Rooney, A. P. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66: 1212-1217. https://doi.org/10.1099/ijsem.0.000858
  10. Fan, H., Ru, J., Zhang, Y., Wang, Q. and Li, Y. 2017. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol. Res. 199: 89-97. https://doi.org/10.1016/j.micres.2017.03.004
  11. Glass, N. L. and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61: 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  12. Guo, Q., Dong, W., Li, S., Lu, X., Wang, P., Zhang, X. et al. 2014. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol. Res. 169: 533-540. https://doi.org/10.1016/j.micres.2013.12.001
  13. Jeong, M. H., Kim D. H. and Uhm, J. Y. 1994. Establishment of fungicidal spray schedule for effective control of apple white rot. I. Guiding principles for selecting protective fungicides in accordance with apple growing season. Korean J. Plant Pathol. 10: 284-291.
  14. Kang, B. R., Kim, Y. H., Nam, H. S. and Kim, Y. C. 2017. Correlation between biosurfactants and antifungal activity of a biocontrol bacterium, Bacillus amyloliquefaciens LM11. Res. Plant Dis. 23: 177-185. (In Korean) https://doi.org/10.5423/RPD.2017.23.2.177
  15. Kim, C.-H. 2002. Review of disease incidence of major crops in 2001. Res. Plant Dis. 8: 1-10. (In Korean) https://doi.org/10.5423/RPD.2002.8.1.001
  16. Kim, D., Li, T., Lee, J. and Lee, S.-H. 2022. Biological efficacy of endophytic Bacillus velezensis CH-15 from ginseng against ginseng root rot pathogens. Res. Plant Dis. 28: 19-25. (In Korean) https://doi.org/10.5423/RPD.2022.28.1.19
  17. Kim, D. H., Kim, E. and Uhm, J. Y. 1996. Trials for developing the measures to reduce the inoculum sources of apple white rot. Korean J. Plant Pathol. 12: 219-225. (In Korean)
  18. Ko, K. S., Kim, J.-M., Kim, J.-W., Jung, B. Y., Kim, W., Kim, I. J. et al. 2003. Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR. J. Clin. Microbiol. 41: 2908-2914. https://doi.org/10.1128/JCM.41.7.2908-2914.2003
  19. Lee, D. H., Cho, L. H., Shin J. S. and Uhm, J. Y. 2006a. Suppressive activities of foliar spray fungicides for apple against sporulation of Botryosphaeria dothidea, the causal fungus of white rot, and their role in disease control. Res. Plant Dis. 12: 240-248. (In Korean) https://doi.org/10.5423/RPD.2006.12.3.240
  20. Lee, D. H., Lee, S. W., Choi, K. H., Kim, D. A. and Uhm, J. Y. 2006b. Survey on the occurrence of apple diseases in Korea from 1992 to 2000. Plant Pathol. J. 22: 375-380. https://doi.org/10.5423/PPJ.2006.22.4.375
  21. McManus, P. S. 2014. Does a drop in the bucket make a splash? Assessing the impact of antibiotic use on plants. Curr. Opin. Microbiol. 19: 76-82. https://doi.org/10.1016/j.mib.2014.05.013
  22. Mu, Y., Yue, Y., Gu, G., Deng, Y., Jin, H. and Tao, K. 2020. Identification and characterization of the Bacillus atrophaeus strain J-1 as biological agent of apple ring rot disease. J. Plant Dis. Prot. 127: 367-378. https://doi.org/10.1007/s41348-020-00309-x
  23. Nakamura, A., Uozumi, T. and Beppu, T. 1987. Nucleotide sequence of a cellulase gene of Bacillus subtilis. Eur. J. Biochem. 164: 317-320. https://doi.org/10.1111/j.1432-1033.1987.tb11060.x
  24. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270. https://doi.org/10.1016/S0378-1097(98)00555-2
  25. Niu, B., Vater, J., Rueckert, C., Blom, J., Lehmann, M., Ru, J.-J. et al. 2013. Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol. 13: 137.
  26. Park, D. H., Lee, J. H., Jeong, T. S., Hwang, S. J., Hong, D. K. and Won, H. S. 2019. Analysis of pesticide application in apple orchards in Gangwon province. J. Agric. Life Environ. Sci. 31: 11-16. (In Korean)
  27. Park, H.-S. and Cho, J.-I. 1996. Isolation and identification of antagonistic microorganisms for biological control to major diseases of apple tree (Malus domestica Borkh). Korean J. Org. Agric. 5: 137-147.
  28. Park, K. 2011. Development of biopesticide and role of Bacillus spp. Korean Ind. Chem. News 14: 1-11.
  29. Reva, O. N., Swanevelder, D. Z. H., Mwita, L. A., Mwakilili, A. D., Muzondiwa, D., Joubert, M. et al. 2019. Genetic, epigenetic and phenotypic diversity of four Bacillus velezensis strains used for plant protection or as probiotics. Front. Microbiol. 10: 2610.
  30. Saeid, A., Prochownik, E. and Dobrowolska-Iwanek, J. 2018. Phosphorus solubilization by Bacillus species. Molecules 23: 2897.
  31. Sazci, A., Erenler, K. and Radford, A. 1986. Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. J. Appl. Bacteriol. 61: 559-562. https://doi.org/10.1111/j.1365-2672.1986.tb01729.x
  32. Sokol, P. A., Ohman, D. E. and Iglewski, B. H. 1979. A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J. Clin. Microbiol. 9: 538-540. https://doi.org/10.1128/jcm.9.4.538-540.1979
  33. Stoll, A., Salvatierra-Martinez, R., Gonzalez, M. and Araya, M. 2021. The role of surfactin production by Bacillus velezensis on colonization, biofilm formation on tomato root and leaf surfaces and subsequent protection (ISR) against Botrytis cinerea. Microorganisms 9: 2251.
  34. Sun, Z., Hao, B., Wang, C., Li, S., Xu, Y., Li, B. et al. 2023. Biocontrol features of Pseudomonas syringae B-1 against Botryosphaeria dothidea in apple fruit. Front. Microbiol. 14: 1131737.
  35. Sutton, T. B. and Boyne, J. V. 1983. Inoculum availability and pathogenic variation in Botryosphaeria dothidea in apple production areas of North Carolina. Plant Dis. 67: 503-506. https://doi.org/10.1094/PD-67-503
  36. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  37. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  38. Venkataramanamma, K., Reddy, B. V. B., Jayalakshmi, R. S., Jayalakshmi, V. and Rajendran, L. 2022. Isolation, in vitro evaluation of Bacillus spp. against Fusarium oxysporum f. sp. ciceris and their growth promotion activity. Egypt. J. Biol. Pest Control 32: 123.
  39. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J White, pp. 315-322. Academic Press, San Diego, CA, USA.
  40. Yin, X.-T., Xu, L.-N., Xu, L., Fan, S.-S., Liu, Z.-Y. and Zhang, X.-Y. 2011. Evaluation of the efficacy of endophytic Bacillus amyloliquefaciens against Botryosphaeria dothidea and other phytopathogenic microorganisms. Afr. J. Microbiol. Res. 5: 340-345.
  41. Yuan, H., Yuan, M., Shi, B., Wang, Z., Huang, T., Zhu, J. et al. 2023. Biocontrol activity of Bacillus halotolerans strain Pl7 against Botryosphaeria dothidea causing apple postharvest decay and potential mechanisms. Front. Microbiol. 13: 1058167.
  42. Zaid, D. S., Cai, S., Hu, C., Li, Z. and Li, Y. 2022. Comparative genome analysis reveals phylogenetic identity of Bacillus velezensis HNA3 and genomic insights into its plant growth promotion and biocontrol effects. Microbiol. Spectr. 10: e0216921.