DOI QR코드

DOI QR Code

Effect of Milling on Reduction of Fusarium Mycotoxins in Barley

보리 도정이 Fusarium 곰팡이독소 저감에 미치는 효과

  • Seul Gi Baek (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Mi-Jeong Lee (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Ju-Young Nah (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Soo Bin Yim (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Jung-Hye Choi (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Jang Nam Choi (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Ja Yeong Jang (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Jung-Wook Yang (Crop Cultivation and Environment Research Division, National Institute of Crop Sciences) ;
  • Theresa Lee (Microbial Safety Division, National Institute of Agricultural Sciences)
  • 백슬기 (국립농업과학원 유해생물과) ;
  • 이미정 (국립농업과학원 유해생물과) ;
  • 나주영 (국립농업과학원 유해생물과) ;
  • 임수빈 (국립농업과학원 유해생물과) ;
  • 최정혜 (국립농업과학원 유해생물과) ;
  • 최장남 (국립농업과학원 유해생물과) ;
  • 장자영 (국립농업과학원 유해생물과) ;
  • 양정욱 (국립식량과학원 재배환경과) ;
  • 이데레사 (국립농업과학원 유해생물과)
  • Received : 2023.10.25
  • Accepted : 2023.10.26
  • Published : 2023.12.31

Abstract

Milling can affect the distribution of mycotoxins in small grains. To investigate the effects on barley, seven hulled barley and three naked barley samples naturally contaminated with trichothecenes and zearalenone were obtained and milled at commonly used rates. Both barleys were simultaneously contaminated with deoxynivalenol and its acetyl derivatives (98.1-2,197.8 ㎍/kg), nivalenol and its acetyl derivative (468.5-3,965.1 ㎍/kg), and zearalenone (4.1-274.2 ㎍/kg). Milling hulled barleys at a rate of 67% reduced the mycotoxins in the grain by 90.9% for deoxynivalenol, 87.7% for nivalenol, and 93.2% for zearalenone. The reduction in naked barleys (milled at a rate of 70%) was slightly lower than in hulled barleys, with 88.6% for deoxynivalenol, 80.2% for nivalenol, and 70.1% for zearalenone. In both barleys, the acetyl derivatives of deoxynivalenol and nivalenol were reduced by 100%. However, barley bran had significantly higher mycotoxin concentrations than the pre-milled grains: bran from hulled barley had a 357% increase in deoxynivalenol, 252% increase in nivalenol, and 169% increase in zearalenone. Similarly, bran from naked barley had a 337% increase in deoxynivalenol, 239% increase in nivalenol, and 554% increase in zearalenone. These results show that mycotoxins present in the outer layers of barley grain can be effectively removed through the milling process. As milling redistributes mycotoxins from the grain into the bran, however, it shows that advance monitoring of barley bran is recommended when using barley bran for human or animal consumption.

곡류의 도정은 곰팡이독소의 분포에 영향을 줄 수 있다. 보리에서의 도정효과를 조사하기 위해 트리코테씬과 제랄레논 독소에 오염된 겉보리 7점과 쌀보리 4점을 일반적으로 사용하는 도정 비율에 따라 도정하였다. 두 종류의 보리는 데옥시니발레놀과 아세틸 유도체(98.1-2,197.8 ㎍/kg), 니발레놀과 아세틸 유도체(468.5-3,965.1 ㎍/kg), 제랄레논(4.1-274.2 ㎍/kg) 등에 동시에 오염되어 있었다. 겉보리를 67%로 도정한 결과 데옥시니발레놀은 90.9%, 니발레놀은 87.7%, 제랄레논은 93.2%가 각각 감소하였다. 70%로 도정한 쌀보리의 경우는 데옥시니발레놀 88.6%, 니발레놀 80.2%, 제랄레논 70.1%이 각각 감소하였다. 두 보리 모두 데옥시니발레놀과 니발레놀의 아세틸 유도체는 100% 감소하였다. 그러나 보리겨는 도정 전 보리에 비해 곰팡이독소가 크게 증가하였다. 겉보리의 겨에서는 데옥시니발레놀, 니발레놀, 제랄레논이 각각 평균 357%, 252%, 169% 증가하였다. 이와 유사하게 쌀보리의 겨에서는 데옥시니발레놀, 니발레놀, 제랄레논이 각각 337%, 239%, 554% 증가하였다. 이러한 결과는 보리 낟알의 외피에 존재하는 곰팡이독소가 도정 과정을 통해 효과적으로 제거될 수 있음을 나타낸다. 그러나 도정을 통해 곰팡이독소가 낟알에서 겨로 집적됨에 따라 보리겨를 인축에 활용하기 위해서는 사전에 독소의 오염 수준을 확인할 필요가 있음을 보여준다.

Keywords

Acknowledgement

This study was carried out with the support of "Research Program for Agricultural Science & Technology Development (Project No. PJ017227)", National Institute of Agricultural Science, Rural Development Administration, Republic of Korea.

References

  1. Hazel, C. M. and Patel, S. 2004. Influence of processing on trichothecene levels. Toxicol. Lett. 153: 51-59. https://doi.org/10.1016/j.toxlet.2004.04.040
  2. Hong, S.-M., Kwon, O.-K., Choi, D.-S., Kim, J.-H., Choi, G.-H. and Cho, N.-J. 2014. Diminution of mycotoxins from Fusarium sp. in barley and wheat through post-harvest processing methods. J. Korean Soc. Appl. Biol. Chem. 57: 297-299. https://doi.org/10.1007/s13765-014-4016-1
  3. Karlovsky, P., Suman, M., Berthiller, F., De Meester, J., Eisenbrand, G., Perrin, I. et al. 2016. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 32: 179-205. https://doi.org/10.1007/s12550-016-0257-7
  4. Khatibi, P. A., Berger, G., Wilson, J., Brooks, W. S., McMaster, N., Griffey, C. A. et al. 2014. A comparison of two milling strategies to reduce the mycotoxin deoxynivalenol in barley. J. Agric. Food Chem. 62: 4204-4213. https://doi.org/10.1021/jf501208x
  5. Kim, D.-H., Jang, H.-S., Choi, G.-I., Kim, H.-J., Kim, H.-J., Kim, H.-L. et al. 2013. Occurrence of mycotoxins in Korean grains and their simultaneous analysis. Korean J. Food Sci. Technol. 45: 111-119. (In Korean) https://doi.org/10.9721/KJFST.2013.45.1.111
  6. Lee, T., Baek, S. G., Kim, S., Paek, J.-S., Park, J. J., Choi, J. et al. 2022. Trends in mycotoxin contamination of cereals and cereal products in Korea. Res. Plant Dis. 28: 179-194. (In Korean) https://doi.org/10.5423/RPD.2022.28.4.179
  7. Lee, U., Lee, M. Y., Park, W. Y. and Ueno, Y. 1992. Decontamination of Fusarium mycotoxins, nivalenol, deoxynivalenol, and zearalenone, in barley by the polishing process. Mycotoxin Res. 8: 31-36. https://doi.org/10.1007/BF03192213
  8. Lehotay, S. J., Mastovska, K. and Lightfield, A. R. 2005. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int. 88: 615-629. https://doi.org/10.1093/jaoac/88.2.615
  9. Milani, J. and Maleki, G. 2014. Effects of processing on mycotoxin stability in cereals. J. Sci. Food Agric. 94: 2372-2375. https://doi.org/10.1002/jsfa.6600
  10. Ryu, D., Jackson, L. S. and Bullerman, L. B. 2002. Effects of processing on zearalenone. In: Mycotoxins and Food Safety, eds. by J. W. DeVries, M. W. Trucksess and L. S. Jackson, pp. 205-216. Springer, New York, NY, USA.
  11. Schwake-Anduschus, C., Proske, M., Sciurba, E., Muenzing, K., Koch, M. and Maul, R. 2015. Distribution of deoxynivalenol, zearalenone, and their respective modified analogues in milling fractions of naturally contaminated wheat grains. World Mycotoxin J. 8: 433-443. https://doi.org/10.3920/WMJ2014.1818
  12. Tanaka, K., Hara, N., Goto, T. and Manabe, M. 2000. Reduction of mycotoxins contamination by processing grain. JSM Mycotoxins 1999: 95-100. https://doi.org/10.2520/myco1975.1999.Suppl2_95
  13. Tanaka, T., Hasegawa, A., Yamamoto, S., Matsuki, Y. and Ueno, Y. 1986. Residues of Fusarium mycotoxins, nivalenol, deoxynivalenol and zearalenone, in wheat and processed food after milling and baking. J. Food Hyg. Soc. Jpn. 27: 653-655. https://doi.org/10.3358/shokueishi.27.653
  14. Trenholm, H. L., Charmley, L. L., Prelusky, D. B. and Warner, R. M. 1991. Two physical methods for the decontamination of four cereals contaminated with deoxynivalenol and zearalenone. J. Agric. Food Chem. 39: 356-360. https://doi.org/10.1021/jf00002a026
  15. Wan, J., Chen, B. and Rao, J. 2020. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr. Rev. Food Sci. Food Saf. 19: 928-953. https://doi.org/10.1111/1541-4337.12546
  16. Zheng, Y., Hossen, S. M., Sago, Y., Yoshida, M., Nakagawa, H., Nagashima, H. et al. 2014. Effect of milling on the content of deoxynivalenol, nivalenol, and zearalenone in Japanese wheat. Food Control 40: 193-197. https://doi.org/10.1016/j.foodcont.2013.11.043